10 CFR Part 430, Subpart B, Appendix D to Subpart B of Part 430 - Uniform Test Method for Measuring the Energy Consumption of Clothes Dryers

Status message

There are 11 Updates appearing in the Federal Register for 10 CFR 430. View below or at eCFR (GPOAccess)
View PDF at GPO Pt. 430, Subpt. B, App. D
Appendix D to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Clothes Dryers
Note:
Manufacturers must continue to use appendix D to subpart B of part 430 until the energy conservation standards for clothes dryers at 10 CFR 430.32(h) are amended to require mandatory compliance using appendix D1.
1. Definitions
1.1“AHAM” means the Association of Home Appliance Manufacturers.
1.2“Bone dry” means a condition of a load of test clothes which has been dried in a dryer at maximum temperature for a minimum of 10 minutes, removed and weighed before cool down, and then dried again for 10-minute periods until the final weight change of the load is 1 percent or less.
1.3“Compact” or compact size” means a clothes dryer with a drum capacity of less than 4.4 cubic feet.
1.4“Cool down” means that portion of the clothes drying cycle when the added gas or electric heat is terminated and the clothes continue to tumble and dry within the drum.
1.5“Cycle” means a sequence of operation of a clothes dryer which performs a clothes drying operation, and may include variations or combinations of the functions of heating, tumbling and drying.
1.6“Drum capacity” means the volume of the drying drum in cubic feet.
1.7“HLD-1” means the test standard promulgated by AHAM and titled “AHAM Performance Evaluation Procedure for Household Tumble Type Clothes Dryers”, June 1974, and designated as HLD-1.
1.8“HLD-2EC” means the test standard promulgated by AHAM and titled “Test Method for Measuring Energy Consumption of Household Tumble Type Clothes Dryers,” December 1975, and designated as HLD-2EC.
1.9“Standard size” means a clothes dryer with a drum capacity of 4.4 cubic feet or greater.
1.10“Moisture content” means the ratio of the weight of water contained by the test load to the bone-dry weight of the test load, expressed as a percent.
1.11“Automatic termination control” means a dryer control system with a sensor which monitors either the dryer load temperature or its moisture content and with a controller which automatically terminates the drying process. A mark or detent which indicates a preferred automatic termination control setting must be present if the dryer is to be classified as having an “automatic termination control.” A mark is a visible single control setting on one or more dryer controls.
1.12“Temperature sensing control” means a system which monitors dryer exhaust air temperature and automatically terminates the dryer cycle.
1.13“Moisture sensing control” means a system which utilizes a moisture sensing element within the dryer drum that monitors the amount of moisture in the clothes and automatically terminates the dryer cycle.
2. Testing Conditions
2.1Installation. Install the clothes dryer in accordance with manufacturer's instructions. The dryer exhaust shall be restricted by adding the AHAM exhaust simulator described in 3.3.5 of HLD-1. All external joints should be taped to avoid air leakage. Disconnect all console light or other lighting systems on the clothes dryer which do not consume more than 10 watts during the clothes dryer test cycle.
2.2Ambient temperature and humidity. Maintain the room ambient air temperature at 75 ±3 °F and the room relative humidity at 50±10 percent relative humidity.
2.3Energy supply.
2.3.1Electrical supply. Maintain the electrical supply at the clothes dryer terminal block within 1 percent of 120/240 or 120/208Y or 120 volts as applicable to the particular terminal block wiring system and within 1 percent of the nameplate frequency as specified by the manufacturer. If the dryer has a dual voltage conversion capability, conduct test at the highest voltage specified by the manufacturer.
2.3.2Gas supply.
2.3.2.1Natural gas. Maintains the gas supply to the clothes dryer at a normal inlet test pressure immediately ahead of all controls at 7 to 10 inches of water column. If the clothes dryer is equipped with a gas appliance pressure regulator, the regulator outlet pressure at the normal test pressure shall be approximately that recommended by the manufacturer. The hourly Btu rating of the burner shall be maintained within ±5 percent of the rating specified by the manufacturer. The natural gas supplied should have a heating value of approximately 1,025 Btu's per standard cubic foot. The actual heating value, H n2, in Btu's per standard cubic foot, for the natural gas to be used in the test shall be obtained either from measurements made by the manufacturer conducting the test using a standard continuous flow calorimeter as described in 2.4.6 or by the purchase of bottled natural gas whose Btu rating is certified to be at least as accurate a rating as could be obtained from measurements with a standard continuous flow calorimeter as described in 2.4.6.
2.3.2.2Propane gas. Maintain the gas supply to the clothes dryer at a normal inlet test pressure immediately ahead of all controls at 11 to 13 inches of water column. If the clothes dryer is equipped with a gas appliance pressure regulator, the regulator outlet pressure at the normal test pressure shall be approximately that recommended by the manufacturer. The hourly Btu rating of the burner shall be maintained within ±5 percent of the rating specified by the manufacturer. The propane gas supplied should have a heating value of approximately 2,500 Btu's per standard cubic foot. The actual heating value, H p, in Btu's per standard cubic foot, for the propane gas to be used in the test shall be obtained either from measurements made by the manufacturer conducting the test using a standard continuous flow calorimeter as described in 2.4.6 or by the purchase of bottled gas whose Btu rating is certified to be at least as accurate a rating as could be obtained from measurement with a standard continuous calorimeter as described in 2.4.6.
2.4Instrumentation. Perform all test measurements using the following instruments as appropriate.
2.4.1Weighing scale for test cloth. The scale shall have a range of 0 to a maximum of 30 pounds with a resolution of at least 0.2 ounces and a maximum error no greater than 0.3 percent of any measured value within the range of 3 to 15 pounds.
2.4.1.2Weighing scale for drum capacity measurements. The scale should have a range of 0 to a maximum of 500 pounds with resolution of 0.50 pounds and a maximum error no greater than 0.5 percent of the measured value.
2.4.2Kilowatt-hour meter. The kilowatt-hour meter shall have a resolution of 0.001 kilowatt-hours and a maximum error no greater than 0.5 percent of the measured value.
2.4.3Gas meter. The gas meter shall have a resolution of 0.001 cubic feet and a maximum error no greater than 0.5 percent of the measured value.
2.4.4Dry and wet bulb psychrometer. The dry and wet bulb psychrometer shall have an error no greater than ±1 °F.
2.4.5Temperature. The temperature sensor shall have an error no greater than ±1 °F.
2.4.6Standard Continuous Flow Calorimeter. The Calorimeter shall have an operating range of 750 to 3,500 Btu per cubic feet. The maximum error of the basic calorimeter shall be no greater than 0.2 percent of the actual heating value of the gas used in the test. The indicator readout shall have a maximum error no greater than 0.5 percent of the measured value within the operating range and a resolution of 0.2 percent of the full scale reading of the indicator instrument.
2.5Lint trap. Clean the lint trap thoroughly before each test run.
2.6Test cloths.
2.6.1Energy test cloth. The energy test cloth shall be clean and consist of the following:
(a) Pure finished bleached cloth, made with a momie or granite weave, which is a blended fabric of 50 percent cotton and 50 percent polyester and weighs within 10 percent of 5.75 ounces per square yard after test cloth preconditioning and has 65 ends on the warp and 57 picks on the fill. The individual warp and fill yarns are a blend of 50 percent cotton and 50 percent polyester fibers.
(b) Cloth material that is 24 inches by 36 inches and has been hemmed to 22 inches by 34 inches before washing. The maximum shrinkage after five washes shall not be more than four percent on the length and width.
(c) The number of test runs on the same energy test cloth shall not exceed 25 runs.
2.6.2Energy stuffer cloths. The energy stuffer cloths shall be made from energy test cloth material and shall consist of pieces of material that are 12 inches by 12 inches and have been hemmed to 10 inches by 10 inches before washing. The maximum shrinkage after five washes shall not be more than four percent on the length and width. The number of test runs on the same energy stuffer cloth shall not exceed 25 runs after test cloth preconditioning.
2.6.3Test Cloth Preconditioning.
A new test cloth load and energy stuffer cloths shall be treated as follows:
(1) Bone dry the load to a weight change of ±1 percent, or less, as prescribed in Section 1.2.
(2) Place test cloth load in a standard clothes washer set at the maximum water fill level. Wash the load for 10 minutes in soft water (17 parts per million hardness or less), using 6.0 grams of AHAM Standard Test Detergent, IIA, per gallon of water. Wash water temperature is to controlled at 140°±5 °F (60° ±2.7 °C). Rinse water temperature is to be controlled at 100° ±5 °F (37.7 ±2.7 °C).
(3) Rinse the load again at the same water temperature.
(4) Bone dry the load as prescribed in Section 1.2 and weigh the load.
(5) This procedure is repeated until there is a weight change of one percent or less.
(6) A final cycle is to be a hot water wash with no detergent, followed by two warm water rinses.
2.7Test loads.
2.7.1Compact size dryer load. Prepare a bone-dry test load of energy cloths which weighs 3.00 pounds ±.03 pounds. Adjustments to the test load to achieve the proper weight can be made by the use of energy stuffer cloths, with no more than five stuffer cloths per load. Dampen the load by agitating it in water whose temperature is 100° ±5 °F and consists of 0 to 17 parts per million hardness for approximately two minutes in order to saturate the fabric. Then, extract water from the wet test load by spinning the load until the moisture content of the load is between 66.5 percent to 73.5 percent of the bone-dry weight of the test load.
2.7.2Standard size dryer load. Prepare a bone-dry test load of energy cloths which weighs 7.00 pounds ±.07 pounds. Adjustments to the test load to achieve the proper weight can be made by the use of energy stuffer cloths, with no more than five stuffer cloths per load. Dampen the load by agitating it in water whose temperature is 100° ±5 °F and consists of 0 to 17 parts per million hardness for approximately two minutes in order to saturate the fabric. Then, extract water from the wet test load by spinning the load until the moisture content of the load is between 66.5 percent to 73.5 percent of the bone-dry weight of the test load.
2.7.3Method of loading. Load the energy test cloths by grasping them in the center, shaking them to hang loosely and then dropping them in the dryer at random.
2.8Clothes dryer preconditioning. Before any test cycle, operate the dryer without a test load in the non-heat mode for 15 minutes or until the discharge air temperature is varying less than 1 °F for 10 minutes, which ever is longer, in the test installation location with the ambient conditions within the specified rest condition tolerances of 2.2.
3. Test Procedures and Measurements
3.1Drum capacity. Measure the drum capacity by sealing all openings in the drum except the loading port with a plastic bag, and ensure that all corners and depressions are filled and that there are no extrusions of the plastic bag through the opening in the drum. Support the dryer's rear drum surface on a platform scale to prevent deflection of the dryer, and record the weight of the empty dryer. Fill the drum with water to a level determined by the intersection of the door plane and the loading port. Record the temperature of the water and then the weight of the dryer with the added water and then determine the mass of the water in pounds. Add or subtract the appropriate volume depending on whether or not the plastic bag protrudes into the drum interior. The drum capacity is calculated as follows:
C=w/d
C= capacity in cubic feet.
w= weight of water in pounds.
d= density of water at the measured temperature in pounds per cubic feet.
3.2Dryer loading. Load the dryer as specified in 2.7.
3.3Test cycle. Operate the clothes dryer at the maximum temperature setting and, if equipped with a timer, at the maximum time setting and dry the test load until the moisture content of the test load is between 2.5 percent to 5.0 percent of the bone-dry weight of the test load, but do not permit the dryer to advance into cool down. If required, reset the timer or automatic dry control.
3.4Data recording. Record for each test cycle:
3.4.1Bone-dry weight of the test load described in 2.7.
3.4.2Moisture content of the wet test load before the test, as described in 2.7.
3.4.3Moisture content of the dry test load obtained after the test described in 3.3.
3.4.4Test room conditions, temperature and percent relative humidity described in 2.2.
3.4.5For electric dryers—the total kilowatt-hours of electric energy, Et, consumed during the test described in 3.3.
3.4.6For gas dryers:
3.4.6.1Total kilowatt-hours of electrical energy, Ete, consumed during the test described in 3.3.
3.4.6.2Cubic feet of gas per cycle, Etg, consumed during the test described in 3.3.
3.4.6.3On gas dryers using a continuously burning pilot light—the cubic feet of gas, Epg, consumed by the gas pilot light in one hour.
3.4.6.4Correct the gas heating value, GEF, as measured in 2.3.2.1 and 2.3.2.2, to standard pressure and temperature conditions in accordance with U.S. Bureau of Standards, circular C417, 1938. A sample calculation is illustrated in appendix E of HLD-1.
3.5Test for automatic termination field use factor credits. Credit for automatic termination can be claimed for those dryers which meet the requirements for either temperature-sensing control, 1.12, or moisture sensing control, 1.13, and having present the appropriate mark or detent feed defined in 1.11.
4. Calculation of Derived Results From Test Measurements
4.1Total per-cycle electric dryer energy consumption. Calculate the total electric dryer energy consumption per cycle, Ece expressed in kilowatt-hours per cycle and defined as:
E ce=[66/W wW d)]×E tt×FU
E t=the energy recorded in 3.4.5.
66=an experimentally established value for the percent reduction in the moisture content of the test load during a laboratory test cycle expressed as a percent.
FU=Field use factor.
=1.18 for time termination control systems.
=1.04 for automatic control systems which meet the requirements of the definitions for automatic termination controls in 1.11.1, 1.12 and 1.13.
Ww=the moisture content of the wet test load as recorded in 3.4.2.
Wd=the moisture content of the dry test load as recorded in 3.4.3.
4.2Per-cycle gas dryer electrical energy consumption. Calculate the gas dryer electrical energy consumption per cycle, E ge, expressed in kilowatt-hours per cycle and defined as:
E ge=[66/(W w −W d)]×E te ×FU
E te=the energy recorded in 3.4.6.1
FU, 66, W w, W d as defined in 4.1
4.3Per-cycle gas dryer gas energy consumption. Calculate the gas dryer gas energy consumption per cycle, E ge. expressed in Btu's per cycle as defined as:
E gg=[66/(W w −W d)]×E tg ×FU×GEF
E tg=the energy recorded in 3.4.6.2
GEF=corrected gas heat value (Btu per cubic feet) as defined in 3.4.6.4
FU, 66, W w W d as defined in 4.1
4.4Per-cycle gas dryer continuously burning pilot light gas energy consumption. Calculate the gas dryer continuously burning pilot light gas energy consumption per cycle, E up expressed in Btu's per cycle and defined as:
E up =E pg ×(8760−140/416)×GEF
E pg=the energy recorded in 3.4.6.3
8760=number of hours in a year
416=representative average number of clothes dryer cycles in a year
140=estimated number of hours that the continuously burning pilot light is on during the operation of the clothes dryer for the representative average use cycle for clothes dryers (416 cycles per year)
GEF as defined in 4.3
4.5Total per-cycle gas dryer gas energy consumption expressed in Btu's. Calculate the total gas dryer energy consumption per cycle, E g, expressed in Btu's per cycle and defined as:
E g =E gg E up
E gg as defined in 4.3
E up as defined in 4.4
4.6Total per-cycle gas dryer energy consumption expressed in kilowatt-hours. Calculate the total gas dryer energy consumption per cycle, E cg, expressed in kilowatt-hours per cycle and defined as:
E cg =E ge (E g /3412 Btu/k Wh)
E ge as defined in 4.2
E g as defined in 4.5
[46 FR 27326, May 19, 1981, as amended at 76 FR 1032, Jan. 6, 2011]

Title 10 published on 2014-01-01

The following are only the Rules published in the Federal Register after the published date of Title 10.

For a complete list of all Rules, Proposed Rules, and Notices view the Rulemaking tab.

  • 2014-07-29; vol. 79 # 145 - Tuesday, July 29, 2014
    1. 79 FR 43927 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces; Energy Conservation Standards for Residential Direct Heating Equipment
      GPO FDSys XML | Text
      DEPARTMENT OF ENERGY, Office of Energy Efficiency and Renewable Energy
      Final rule; technical amendment.
      Effective Date: July 29, 2014.
      10 CFR Part 430

This is a list of United States Code sections, Statutes at Large, Public Laws, and Presidential Documents, which provide rulemaking authority for this CFR Part.

This list is taken from the Parallel Table of Authorities and Rules provided by GPO [Government Printing Office].

It is not guaranteed to be accurate or up-to-date, though we do refresh the database weekly. More limitations on accuracy are described at the GPO site.


United States Code

Title 10 published on 2014-01-01

The following are ALL rules, proposed rules, and notices (chronologically) published in the Federal Register relating to 10 CFR 430 after this date.

  • 2014-12-03; vol. 79 # 232 - Wednesday, December 3, 2014
    1. 79 FR 71705 - Energy Conservation Standards for Miscellaneous Refrigeration Products: Public Meeting and Availability of the Preliminary Technical Support Document
      GPO FDSys XML | Text
      DEPARTMENT OF ENERGY, Office of Energy Efficiency and Renewable Energy
      Notice of public meeting and availability of preliminary technical support document.
      DOE will hold a public meeting on Friday January 9, 2015, from 9 a.m. to 4 p.m., in Washington, DC. Additionally, DOE plans to allow for participation in the public meeting via Webinar. DOE will accept comments, data, and other information regarding this rulemaking before or after the public meeting, but no later than February 2, 2015. See section IV, “Public Participation,” of this notice for details.
      10 CFR Part 430