40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.

Status message

There are 6 Updates appearing in the Federal Register for 40 CFR 63. View below or at eCFR (GPOAccess)
§ 63.1103 Source category-specific applicability, definitions, and requirements.
(a) Acetal resins production applicability, definitions, and requirements—
(1) Applicability—
(i) Affected source. For the acetal resins production source category (as defined in paragraph (a)(2) of this section), the affected source shall comprise all emission points, in combination, listed in paragraphs (a)(1)(i)(A) through (D) of this section, that are associated with an acetal resins production process unit located at a major source, as defined in section 112(a) of the Clean Air Act (Act).
(A) All storage vessels that store liquids containing organic HAP. For purposes of regulation, surge control vessels and bottoms receivers that are located as part of the process train prior to the polymer reactor are to be regulated under the front-end process vent provisions.
(B) All process vents from continuous unit operations (front end process vents and back end process vents).
(C) All wastewater streams associated with the acetal resins production process unit as defined in (a)(2) of this section.
(D) Equipment (as defined in § 63.1101 of this subpart) that contains or contacts organic HAP.
(ii) Compliance schedule. The compliance schedule for affected sources as defined in paragraph (a)(1)(i) of this section is specified in § 63.1102(a).
(2) Definitions.
Acetal resins production means the production of homopolymers and/or copolymers of alternating oxymethylene units. Acetal resins are also known as polyoxymethylenes, polyacetals, and aldehyde resins. Acetal resins are generally produced by polymerizing formaldehyde (HCHO) with the methylene functional group (CH2) and are characterized by repeating oxymethylene units (CH2O) in the polymer backbone.
Back end process vent means any process vent from a continuous unit operation that is not a front end process vent up to the final separation of raw materials and by-products from the stabilized polymer.
Front end process vent means any process vent from a continuous unit operation involved in the purification of formaldehyde feedstock for use in the acetal homopolymer process. All front end process vents are restricted to those vents that occur prior to the polymer reactor.
(3) Requirements. Table 1 of this section specifies the acetal resins production standards applicability for existing and new sources. Applicability assessment procedures and methods are specified in §§ 63.1104 through 63.1107. An owner or operator of an affected source is not required to perform tests, TRE calculations or other applicability assessment procedures if they opt to comply with the most stringent requirements for an applicable emission point pursuant to this subpart. General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Procedures for approval of alternative means of emission limitations are specified in § 63.1113. The owner or operator must control organic HAP emissions from each affected source emission point by meeting the applicable requirements specified in table 1 of this section.
Table 1 to § 63.1103(a) —What Are My Requirements If I Own Or Operate An Acetal Resins Production Existing Or New Affected Source?
If you own or operate. . . And if. . . Then you must. . .
a The TRE is determined according to the procedures specified in § 63.1104(j).
b The weight-percent organic HAP is determined for equipment according to procedures specified in § 63.1107.
1. A storage vessel with: 34 cubic meters < capacity The maximum true vapor pressure of organic HAP > 17.1 kilopascals (for existing sources) or > 11.7 kilopascals (for new sources) a. Reduce emissions of total organic HAP by 95 weight-percent by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS (national emission standards for closed vent systems, control devices, recovery devices, and routing to a fuel gas system or a process), as specified in § 63.982(a)(1) (storage vessel requirements) of this part; or
b. Comply with the requirements of subpart WW (national emission standards for storage vessels (control level 2)) of this part.
2. A front end process vent from continuous unit operations a. Reduce emissions of total organic HAP by using a flare meeting the requirements of subpart SS of this part; or
b. Reduce emissions of total organic HAP by 60 weight-percent, or reduce TOC to a concentration of 20 parts per million by volume, whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(2) (process vent requirements) of this part.
3. A back end process vent from continuous unit operations The vent stream has a TRE a < 1.0 a. Reduce emissions of total organic HAP by using a flare meeting the requirements of subpart SS of this part; or
b. Reduce emissions of total organic HAP by 98 weight-percent, or reduce TOC to a concentration of 20 parts per million by volume, whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(2) (process vent requirements) of this part; or
c. Achieve and maintain a TRE index value greater than 1.0.
4. A back end process vent from continuous unit operations 1.0 ≤ TRE a ≤ 4.0 Monitor and keep records of equipment operating parameters specified to be monitored under subpart SS, §§ 63.990(c)(absorber, condenser, and carbon adsorber monitoring) or 63.995(c) (other noncombustion systems used as a control device monitoring) of this part.
5. Equipment as defined under § 63.1101 The equipment contains or contacts ≥ 10 weight-percent organic HAP b, and operates ≤ 300 hours per year Comply with the requirements of subpart TT (national emission standards for equipment leaks (control level 1)) or subpart UU (national emission standards for equipment leaks (control level 2)) of this part.
6. An acetal resins production process unit that generates process wastewater The process wastewater stream is a Group 1 or Group 2 wastewater stream Comply with the requirements of § 63.1106(a).
7. An acetal resins production process unit that generates maintenance wastewater The maintenance wastewater contains organic HAP Comply with the requirements of § 63.1106(b).
8. An item of equipment listed in § 63.1106(c)(1) The item of equipment meets the criteria specified in § 63.1106(c)(1) through (3) and either (c)(4)(i) or (ii) Comply with the requirements in Table 35 of subpart G of this part.
(b) Acrylic and modacrylic fiber production applicability, definitions, and requirements—
(1) Applicability—
(i) Affected source. For the acrylic fibers and modacrylic fibers production (as defined in paragraph (b)(2) of this section) source category, the affected source shall comprise all emission points, in combination, listed in paragraphs (b)(1)(i)(A) through (E) of this section, that are associated with a suspension or solution polymerization process unit that produces acrylic and modacrylic fiber located at a major source as defined in section 112(a) of the Act.
(A) All storage vessels that store liquid containing acrylonitrile or organic HAP.
(B) All process vents from continuous unit operations.
(C) All wastewater streams associated with the acrylic and modacrylic fibers production process unit as defined in (b)(2) of this section.
(D) Equipment (as defined in § 63.1101 of this subpart) that contains or contacts acrylonitrile or organic HAP.
(E) All acrylic and modacrylic fiber spinning lines using a spinning solution or suspension having organic acrylonitrile or organic HAP. For the purposes of implementing this paragraph, a spinning line includes the spinning solution filters, spin bath, and the equipment used downstream of the spin bath to wash, dry, or draw the spun fiber.
(ii) Compliance schedule. The compliance schedule, for affected sources as defined in paragraph (b)(1)(i) of this section, is specified in § 63.1102(a).
(2) Definitions.
Acrylic fiber means a manufactured synthetic fiber in which the fiber-forming substance is any long-chain synthetic polymer composed of at least 85 percent by weight of acrylonitrile units.
Acrylic and modacrylic fibers production means the production of either of the following synthetic fibers composed of acrylonitrile units:
(i) Acrylic fiber.
(ii) Modacrylic fiber.
Acrylonitrile solution polymerization means a process where acrylonitrile and comonomers are dissolved in a solvent to form a polymer solution (typically polyacrylonitrile). The polyacrylonitrile is soluble in the solvent. In contrast to suspension polymerization, the resulting reactor polymer solution (spin dope) is filtered and pumped directly to the fiber spinning process.
Acrylonitrile suspension polymerization means a polymerization process where small drops of acrylonitrile and comonomers are suspended in water in the presence of a catalyst where they polymerize under agitation. Solid beads of polymer are formed in this suspension reaction which are subsequently filtered, washed, refiltered, and dried. The beads must be subsequently redissolved in a solvent to create a spin dope prior to introduction to the fiber spinning process.
Fiber spinning line means the group of equipment and process vents associated with acrylic or modacrylic fiber spinning operations. The fiber spinning line includes (as applicable to the type of spinning process used) the blending and dissolving tanks, spinning solution filters, wet spinning units, spin bath tanks, and the equipment used downstream of the spin bath to wash, dry, or draw the spun fiber.
Modacrylic fiber means a manufactured synthetic fiber in which the fiber-forming substance is any long-chain synthetic polymer composed of at least 35 percent by weight of acrylonitrile units but less than 85 percent by weight of acrylonitrile units.
Spin dope means the liquid mixture of polymer and solvent that is fed to the spinneret to form the acrylic and modacrylic fibers.
(3) Requirements. An owner or operator of an affected source must comply with the requirements of paragraph (b)(3)(i) or (ii) of this section.
(i) Table 2 of this section specifies the acrylic and modacrylic fiber production source category control requirement applicability for both existing and new sources. Applicability assessment procedures and methods are specified in §§ 63.1104 through 63.1107. An owner or operator of an affected source is not required to perform tests, or other applicability assessment procedures if they opt to comply with the most stringent requirements for an applicable emission point pursuant to this subpart. General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Procedures for approval of alternative means of emission limitations are specified in § 63.1113. The owner or operator must control organic HAP emissions from each affected source emission point by meeting the applicable requirements specified in table 2 of this section.
Table 2 to § 63.1103 (b)(3)(i)—What Are My Requirements if I Own or Operate an Acrylic and Modacrylic Fiber Production Existing or New Affected Source and Am Complying With Paragraph (b)(3)(i) of This Section?
If you own or operate... And if... Then you must...
a The mass emission rate of halogen atoms contained in organic compounds is determined according to the procedures specified in § 63.1104(i).
b The percent by weight organic HAP is determined according to the procedures specified in § 63.1107.
c The weight-percent organic HAP is determined for equipment according to procedures specified in § 63.1107.
1. A storage vessel The stored material is acrylonitrile a. Reduce emissions of acrylonitrile by 98 weight-percent by venting emissions through a closed vent system to any combination of control device meeting the requirements of subpart SS (national emission standards for closed vent systems, control devices, recovery devices, and routing to a fuel gas system or a process), as specified in § 63.982(a)(1) (storage vessel requirements) of this part, or 95 weight-percent or greater by venting through a closed vent system to a recovery device meeting the requirements of subpart SS (national emission standards for closed vent systems, control devices, recovery devices, and routing to a fuel gas system or a process), § 63.993 (recovery device requirements) of this part; or
b. Comply with the requirements of subpart WW (national emission standards for storage vessels (control level 2)) of this part.
2. A process vent from continuous unit operations (halogenated) The vent steam has a mass emission rate of halogen atoms contained in organic compounds ≥0.45 kilograms per hour a and an acrylonitrile concentration ≥50 parts per million by volume b and an average flow rate ≥0.005 cubic meters per minute a. Reduce emissions of acrylonitrile or TOC as specified for nonhalogenated process vents from continuous unit operations (other than by using a flare) by venting emissions through a closed vent system to a halogen reduction device meeting the requirements of subpart SS, § 63.994 (halogen reduction devices requirements) of this part that reduces hydrogen halides and halogens by 99 weight-percent or to less than 0.45 kilograms per year, whichever is less stringent; or
b. Reduce the process vent halogen atom mass emission rate to less than 0.45 kilograms per hour by venting emissions through a closed vent system to a halogen reduction device meeting the requirements of subpart SS, § 63.994 (halogen reduction devices requirements) of this part and then complying with the requirements specified for process vents from continuous unit operations (nonhalogenated).
3. A process vent from continuous unit operations (nonhalogenated) The vent steam has a mass emission rate of halogen atoms contained in organic compounds <0.45 kilograms per hour a, and an acrylonitrile concentration ≥50 parts per million by volume b and an average flow rate ≥0.005 cubic meters per minute a. Reduce emissions of acrylonitrile by using a flare meeting the requirements of subpart SS, § 63.987 (flare requirements) of this part orb. Reduce emissions of acrylonitrile by 98 weight-percent, or reduce TOC to a concentration of 20 parts per million by volume, whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS (national emission standards for closed vent systems, control devices, recovery devices, and routing to a fuel gas system or a process), as specified in § 63.982(a)(2) (process vent requirements) of this part.
4. A fiber spinning line that is a new or reconstructed source The lines use a spin dope produced from either a suspension polymerization process or solution polymerization process, a. Reduce acrylonitrile emissions by 85 weight-percent or more. (For example, by enclosing the spinning and washing areas of the spinning line (as specified in paragraph (b)(4) of this section) and venting through a closed vent system and using any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a), of this part); or
b. Reduce acrylonitrile emissions from the spinning line to less than or equal to 0.25 kilograms of acrylonitrile per megagram (0.5 pounds of acrylonitrile per ton) of acrylic and modacrylic fiber produced; or
c. Reduce the AN concentration of the spin dope to less than 100 ppmw.
5. A fiber spinning line that is an existing source The spinning line uses a spin dope produced from a solution polymerization process Maintain records and report emissions as specified in §§ 63.1109 through 63.1110. Control of spinning line AN emissions is not required
6. A fiber spinning line that is an existing source The spinning line uses a spin dope produced from a suspension polymerization process a. Reduce the AN concentration of the spin dope to less than 100 ppmw b, or
b. Reduce acrylonitrile emissions from the spinning line to less than or equal to 0.025 kilograms of acrylonitrile per megagram of acrylic and modacrylic fiber produced.
7. Equipment as defined under § 63.1101 It contains or contacts ≥10 weight-percent acrylonitrile c, and operates ≥300 hours per year Comply with the requirements of subpart TT (national emission standards for equipment leaks (control level 1)) or subpart UU (national emission standards for equipment leaks (control level 2)) of this part.
8. An acrylic and modacrylic fiber production process unit that generates process wastewater The process wastewater stream is a Group 1 or Group 2 wastewater stream Comply with the requirements of § 63.1106(a).
9. An acrylic and modacrylic fiber production process unit that generates maintenance wastewater The maintenance wastewater contains organic HAP Comply with the requirements of § 63.1106(b).
10. An item of equipment listed in § 63.1106(c)(1) The item of equipment meets the criteria specified in § 63.1106(c)(1) through (3) and either (c)(4)(i) or (ii) Comply with the requirements in Table 35 of subpart G of this part.
(ii) The owner or operator must control organic HAP emissions from the acrylic and modacrylic fibers production facility by meeting the applicable requirements specified in table 3 of this section. The owner or operator must determine the facility acrylonitrile emission rate using the procedures specified in paragraph (b)(5) of this section. Applicability assessment procedures and methods are specified in §§ 63.1104 through 63.1107. An owner or operator of an affected source does not have to perform tests, TRE calculations or other applicability assessment procedures if they opt to comply with the most stringent requirements for an applicable emission point pursuant to this subpart. General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Procedures for approval of alternative means of emission limitations are specified in § 63.1113.
Table 3 to § 63.1103(b)(3)(ii) —What Are My Requirements If I Own Or Operate An Acrylic And Modacrylic Fiber Production Existing Or New Affected Source And Am Complying With Paragraph (b)(3)(ii) Of This Section?
If you own or operate... Then you must control total organic HAP emissions from the affected source by...
a The weight-percent organic HAP is determined for equipment according to procedures specified in § 63.1107.
1. An acrylic and modacrylic fibers production affected source and your facility is an existing source Meeting all of following requirements:a. Reduce total acrylonitrile emissions from all affected storage vessels, process vents, wastewater streams associated with the acrylic and modacrylic fibers production process unit as defined in paragraph (b)(2) of this section, and fiber spinning lines operated in your acrylic and modacrylic fibers production facility to less than or equal to 0.5 kilograms (kg) of acrylonitrile per megagram (Mg) of fiber produced.
b. Determine the facility acrylonitrile emission rate in accordance with the requirements specified in paragraph (b)(5) of this section.
2. An acrylic and modacrylic fibers production affected source and your facility is a new source Meeting all of following requirements:a. Reduce total acrylonitrile emissions from all affected storage vessels, process vents, wastewater streams associated with the acrylic and modacrylic fibers production process unit as defined in paragraph (b)(2) of this section, and fiber spinning lines operated in your acrylic and modacrylic fibers production facility to less than or equal to 0.25 kilograms (kg) of acrylonitrile per megagram (Mg) of fiber produced.
b. Determine the facility acrylonitrile emission rate in accordance with the requirements specified in paragraph (b)(5) of this section.
3. Equipment as defined under § 63.1101 and it contains or contacts > 10 weight-percent acrylonitrile, a and operates > 300 hours per year Meeting either of the following standards for equipment leaks:a. Comply with subpart TT of this part; or b. Comply with subpart UU of this part.
(4) Fiber spinning line enclosure requirements. For an owner or operator of a new or modified source electing to comply with paragraph (b)(3)(i) of this section, the fiber spinning line enclosure must be designed and operated to meet the requirements specified in paragraphs (b)(4)(i) through (iv) of this section.
(i) The enclosure must cover the spinning and washing areas of the spinning line.
(ii) The enclosure must be designed and operated in accordance with the criteria for a permanent total enclosure as specified in “Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure” in 40 CFR 52.741, appendix B.
(iii) The enclosure may have permanent or temporary openings to allow worker access; passage of material into or out of the enclosure by conveyor, vehicles, or other mechanical means; entry of permanent mechanical or electrical equipment; or to direct airflow into the enclosure.
(iv) The owner or operator must perform the verification procedure for the enclosure as specified in section 5.0 to “Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure” initially when the enclosure is first installed and, thereafter, annually.
(5) Facility acrylonitrile emission rate determination. For an owner or operator electing to comply with paragraph (b)(3)(ii) of this section, the facility acrylonitrile emission rate must be determined using the requirements specified in paragraphs (b)(5)(i) through (iii) of this section.
(i) The owner or operator must prepare an initial determination of the facility acrylonitrile emission rate.
(ii) Whenever changes to the acrylic or modacrylic fiber production operations at the facility could potentially cause the facility acrylonitrile emission rate to exceed the applicable limit of kilogram of acrylonitrile per Megagram of fiber produced, the owner or operator must prepare a new determination of the facility acrylonitrile emission rate.
(iii) For each determination, the owner or operator must prepare and maintain at the facility site sufficient process data, emissions data, and any other documentation necessary to support the facility acrylonitrile emission rate calculation.
(c) Hydrogen fluoride production applicability, definitions, and requirements—
(1) Applicability—
(i) Affected source— For the hydrogen fluoride production (as defined in paragraph (c)(2) of this section) source category, the affected source shall comprise all emission points, in combination, listed in paragraphs (c)(1)(i)(A) through (D) of this section, that are associated with a hydrogen fluoride production process unit located at a major source as defined in section 112(a) of the Act.
(A) All storage vessels used to accumulate or store hydrogen fluoride.
(B) All process vents from continuous unit operations associated with hydrogen fluoride recovery and refining operations. These process vents include vents on condensers, distillation units, and water scrubbers.
(C) All transfer racks used to load hydrogen fluoride into tank trucks or railcars.
(D) Equipment in hydrogen fluoride service (as defined in paragraph (c)(2) of this section).
(ii) Compliance schedule. The compliance schedule, for affected sources as defined in paragraph (c)(1)(i) of this section, is specified in § 63.1102(a).
(2) Definitions.
Connector means flanged, screwed, or other joined fittings used to connect two pipelines or a pipeline and a piece of equipment. A common connector is a flange. Joined fittings welded completely around the circumference of the interface are not considered connectors for the purposes of this subpart.
Equipment means each pump, compressor, agitator, pressure relief device, sampling connection system, open-ended valve or line, valve, connector, and instrumentation system in hydrogen fluoride service; and any control devices or closed-vent systems used to comply with this subpart.
Hydrogen fluoride production means a process engaged in the production and recovery of hydrogen fluoride by reacting calcium fluoride with sulfuric acid. For the purpose of implementing this subpart, hydrogen fluoride production is not a process that produces gaseous hydrogen fluoride for direct reaction with hydrated aluminum to form aluminum fluoride (i.e., the hydrogen fluoride is not recovered as an intermediate or final product prior to reacting with the hydrated aluminum).
In hydrogen fluoride service means that a piece of equipment either contains or contacts a hydrogen fluoride process fluid (liquid or gas).
In vacuum service means that equipment is operating at an internal pressure which is at least 5 kilopascals below ambient pressure.
Instrumentation system means a group of equipment components used to condition and convey a sample of the process fluid to analyzers and instruments for the purpose of determining process operating conditions (e.g., composition, pressure, flow, etc.). Valves and connectors are the predominant type of equipment used in instrumentation systems; however, other types of equipment may also be included in these systems.
Kiln seal means the mechanical or hydraulic seals at both ends of the kiln, designed to prevent the infiltration of moisture and air through the interface of the rotating kiln and stationary pipes and equipment attached to the kiln during normal vacuum operation of the kiln (operation at an internal pressure of at least 0.25 kilopascal [one inch of water] below ambient pressure).
Leakless pump means a pump whose seals are submerged in liquid, a magnetically-driven pump, a pump equipped with a dual mechanical seal system that includes a barrier fluid system, a canned pump, or other pump that is designed with no externally actuated shaft penetrating the pump housing.
Open-ended valve or line means any valve, except relief valves, having one side of the valve seat in contact with process fluid and one side open to the atmosphere, either directly or through open piping.
Pressure release means the emission of materials resulting from the system pressure being greater than the set pressure of the relief device. This release can be one release or a series of releases over a short time period due to a malfunction in the process.
Pressure relief device or valve means a safety device used to prevent operating pressures from exceeding the maximum allowable working pressure of the process equipment. A common pressure relief device is a spring-loaded pressure relief valve. Devices that are actuated either by a pressure of less than or equal to 2.5 pounds per square inch gauge or by a vacuum are not pressure relief devices.
Relief device or valve means a valve used only to release an unplanned, nonroutine discharge. A relief valve discharge can result from an operator error, a malfunction such as a power failure or equipment failure, or other unexpected cause that requires immediate venting of gas from process equipment in order to avoid safety hazards or equipment damage.
Repaired for the purpose of this regulation means equipment is adjusted, or otherwise altered, to eliminate a leak identified by sensory monitoring.
Sampling connection system means an assembly of equipment within a process unit or affected facility used during periods of representative operation to take samples of the process fluid. Equipment used to take nonroutine grab samples is not considered a sampling connection system.
Sensory monitoring means the detection of a potential leak to the atmosphere by walk-through visual, audible, or olfactory monitoring. Comprehensive component-by-component inspection is not required.
Shift means the time a shift operator normally works, typically 8 or 12 hours.
(3) Requirements. Table 4 of this section specifies the hydrogen fluoride production source category applicability and control requirements for both existing and new sources. The owner or operator must control hydrogen fluoride emissions from each affected source emission point as specified in table 4. General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Specific monitoring, recordkeeping, and reporting requirements are specified in table 4. Minimization of emissions from startups, shutdowns, and malfunctions, including those resulting from kiln seals must be addressed in the startup, shutdown, and malfunction plan required by § 63.1111; the plan must also establish reporting and recordkeeping of such events. Procedures for approval of alternative means of emission limitations are specified in § 63.1113.
Table 4 to § 63.1103(c) —What Are My Requirements If I Own or Operate a Hydrogen Fluoride Production Existing or New Affected Source?
If you own or operate . . . And if . . . Then you must . . .
1. A storage vessel The stored material is hydrogen fluoride Reduce emissions of hydrogen fluoride by venting displacement emissions created by normal filling or emptying activities through a closed-vent system to a recovery system or wet scrubber that is designed and operated to achieve a 99 weight-percent removal efficiency. The minimum liquid flow rate to the scrubber that achieves a 99 weight-percent removal efficiency shall be established, and may be done so by design analysis. The liquid flow rate to the scrubber shall be continuously monitored and records maintained according to §§ 63.996 and 63.998(b), (c), and (d)(3) of 40 CFR subpart SS of this part. The Periodic Report specified in § 63.1110(a)(5) of this subpart shall include the information specified in § 63.999(c) of 40 CFR subpart SS of this part, as applicable.
2. A process vent from continuous unit operations The vent stream is from hydrogen fluoride recovery and refining vessels Reduce emissions of hydrogen fluoride from the process vent by venting emissions through a closed-vent system to a wet scrubber that is designed and operated to achieve a 99 weight-percent removal efficiency. Monitoring, recordkeeping, and reporting of wet scrubber operation shall be in accordance with the requirements stated above for a wet scrubber controlling hydrogen fluoride emissions from a storage vessel.
3. A transfer rack The transfer rack is associated with bulk hydrogen fluoride liquid loading into tank trucks and rail cars Reduce emissions of hydrogen fluoride by venting emissions through a closed-vent system to a recovery system or wet scrubber that is designed and operated to achieve a 99 weight-percent removal efficiency. Monitoring, recordkeeping, and reporting of wet scrubber operation shall be in accordance with the requirements stated above for a wet scrubber controlling HF emissions from a storage vessel. You also must load hydrogen fluoride into only tank trucks and railcars that have a current certification in accordance with the U.S. DOT pressure test requirements of 49 CFR part 180 for tank trucks and 49 CFR 173.31 for railcars; or have been demonstrated to be vapor-tight (i.e. will sustain a pressure change of not more than 750 Pascals within 5 minutes after it is pressurized to a minimum or 4,500 Pascals) within the preceding 12 months.
4. Equipment It is in hydrogen fluoride service and operates ≥ 300 hours per year and is not in vacuum service Control hydrogen fluoride emissions by using leakless pumps and by implementing a sensory monitoring leak detection program. Equipment that is excluded from sensory monitoring because it operates less than 300 hours per year or is in vacuum service shall be identified by list, location, or other method and the identity shall be recorded. An owner or operator is required to perform sensory monitoring at least once every shift, but no later than within 15 days. When a leak is detected, repair must begin within one hour and be completed as soon as practical. A record shall be kept of each leak detected and repaired including: equipment identification number, date and time the leak was detected and that repair was initiated, and the date of successful repair.
(d) Polycarbonate production applicability, definitions, and requirements—
(1) Applicability—
(i) Affected source. For the polycarbonate production (as defined in paragraph (d)(2) of this section) source category, the affected source shall comprise all emission points, in combination, listed in paragraphs (d)(1)(i)(A) through (D) of this section, that are part of a polycarbonate production process unit located at a major source as defined in section 112(a) of the Act. For the purposes of this rule, a polycarbonate production process unit is a unit that produces polycarbonate by interfacial polymerization from bisphenols and phosgene. Phosgene production units that are associated with polycarbonate production process units are considered to be part of the polycarbonate production process. A phosgene production unit consists of the reactor in which phosgene is formed and all equipment (listed in paragraphs (d)(1)(i)(A) through (D) of this section) downstream of the reactor that provides phosgene for the production of polycarbonate. Therefore, for the purposes of this rule, such a phosgene production unit is considered to be a polycarbonate production process unit.
(A) All storage vessels that store liquids containing organic HAP.
(B) All process vents from continuous and batch unit operations.
(C) All wastewater streams.
(D) Equipment (as defined in § 63.1101 of this subpart) that contains or contacts organic HAP.
(ii) Compliance schedule. The compliance schedule, for affected sources as defined in paragraph (d)(1)(i) of this section, is specified in § 63.1102(a).
(2) Definitions.
Polycarbonate production means a process engaged in the production of a special class of polyester formed from any dihydroxy compound and any carbonate diester or by ester exchange. Polycarbonate may be produced by solution or emulsion polymerization, although other methods may be used. A typical method for the manufacture of polycarbonate includes the reaction of bisphenol-A with phosgene in the presence of pyridine or other catalyst to form polycarbonate. Methylene chloride or other solvents are used in this polymerization reaction.
(3) Requirements. Tables 5 and 6 of this section specify the applicability criteria and standards for existing and new sources within the polycarbonate production source category. The owner or operator must control organic HAP emissions from each affected source emission point by meeting the applicable requirements specified in tables 5 and 6. Applicability assessment procedures and methods are specified in §§ 63.1104 through 63.1107. An owner or operator of an affected source is not required to perform tests, TRE calculations or other applicability assessment procedures if they opt to comply with the most stringent requirements for an applicable emission point pursuant to this subpart. General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Procedures for approval of alternative means of emission limitations are specified in § 63.1113.
Table 5 to § 63.1103(d) —What Are My Requirements If I Own or Operate A Polycarbonate Production Existing Affected Source?
If you own or operate... And if... Then you must...
a Combined vent streams shall use the applicability determination procedures and methods for process vents from continuous unit operations (§ 63.1104).
b The TRE equation coefficients for halogenated streams (table 1 of § 63.1104(j)(1)) shall be used to calculate the TRE index value.
c The TRE is determined according to the procedures specified in § 63.1104(j). If a dryer is manifolded with such vents, and the vent is routed to a recovery, recapture, or combustion device, then the TRE index value for the vent must be calculated based on the properties of the vent stream (including the contributions of the dryer). If a dryer is manifolded with other vents and not routed to a recovery, recapture, or combustion device, then the TRE index value must be calculated excluding the contributions of the dryer. The TRE index value for the dryer must be calculated separately in this case.
d The mass emission rate of halogen atoms contained in organic compounds is determined according to the procedures specified in § 63.1104(i).
e The weight-percent organic HAP is determined for equipment according to procedures specified in § 63.1107.
1. A storage vessel with: 75 cubic meters ≤ capacity < 151 cubic meters 27.6 kilopascals ≤ maximum true vapor pressure of total organic HAP < 76.6 kilopascals Reduce emissions of total organic HAP by 95 weight-percent by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS (national emission standards for closed vent systems, control devices, recovery devices, and routing to a fuel gas system or a process), as specified in § 63.982(a)(1) (storage vessel requirements) of this part; or comply with the requirements of subpart WW (national emission standards for storage vessels (control level 2)) of this part.
2. A storage vessel with: 151 cubic meters ≤ capacity The maximum true vapor pressure of total organic HAP ≥ 5.2 kilopascals Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(1) (storage vessel requirements) of this part
3. A storage vessel with: 75 cubic meters ≤ capacity < 151 cubic meters The maximum true vapor pressure of total organic HAP ≥ 76.6 kilopascals Reduce emissions of total organic HAP by 95 weight-percent by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(1) (storage vessel requirements) of this part.
4. A process vent from continuous unit operations or a combined vent stream a The vent stream has a TRE b,c ≤ 2.7 a. Reduce emissions of total organic HAP by 98 weight-percent; or reduce total organic HAP to a concentration of 20 parts per million by volume; whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(2) (process vent requirements) of this part and vent emissions through a closed vent system to a halogen reduction device meeting the requirements of subpart SS, § 63.994, of this part, that reduces hydrogen halides and halogens by 99 weight-percent or to less than 0.45 kilograms per hour d, whichever is less stringent; or
b. Reduce the process vent halogen atom mass emission rate to less than 0.45 kilograms per hour by venting emissions through a closed vent system to a halogen reduction device meeting the requirements of subpart SS, § 63.994 (halogen reduction device requirements) of this part and reduce emissions of total organic HAP by 98 weight-percent; or reduce total organic HAP or TOC to a concentration of 20 parts per million by volume; whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(2) (process vent requirements) of this part; or
c. Achieve and maintain a TRE index value greater than 2.7.
5. A process vent from continuous unit operations or a combined vent stream a 2.7 < TRE b,c ≤ 4.0 Monitor and keep records of equipment operating parameters specified to be monitored under subpart SS, §§ 63.990(c) (absorber, condenser, and carbon adsorber monitoring) or 63.995(c) (other noncombustion systems used as a control device monitoring) of this part.
6. Equipment as defined under § 63.1101 The equipment contains or contacts ≥ 5 weight-percent total organic HAP e, and operates ≥ 300 hours per year Comply with the requirements of subpart TT (national emission standards for equipment leaks (control level 1)) or subpart UU (national emission standards for equipment leaks (control level 2)) of this part.
7. A polycarbonate production process unit that generates process wastewater The process wastewater stream is a Group 1 or a Group 2 wastewater stream Comply with the requirements of § 63.1106(a).
8. A polycarbonate production process unit that generates maintenance wastewater The maintenance wastewater contains organic HAP Comply with the requirements of § 63.1106(b).
9. An item of equipment listed in § 63.1106(c)(1) The item of equipment meets the criteria specified in § 63.1106(c)(1) through (3) and either (c)(4)(i) or (ii) Comply with the requirements in Table 35 of subpart G of this part.
Table 6 to § 63.1103(d) —What are My Requirements If I Own or Operate a Polycarbonate Production New Affected Source?
If you own or operate. . . And if. . . Then you must. . .
a Combined vent streams shall use the applicability determination procedures and methods for process vents from continuous unit operations (§ 63.1104).
b The TRE equation coefficients for halogenated streams (Table 1 of § 63.1104(j)(1) of this subpart) shall be used to calculate the TRE index value.
c The TRE is determined according to the procedures specified in § 63.1104(j). If a dryer is manifolded with such vents, and the vent is routed to a recovery, recapture, or combustion device, then the TRE index value for the vent must be calculated based on the properties of the vent stream (including the contributions of the dryer). If a dryer is manifolded with other vents and not routed to a recovery, recapture, or combustion device, then the TRE index value must be calculated excluding the contributions of the dryer. The TRE index value for the dryer must be calculated separately in this case.
d The mass emission rate of halogen atoms contained in organic compounds is determined according to the procedures specified in § 63.1104(i).
e The weight-percent organic HAP is determined for equipment according to procedures specified in § 63.1107.
1. A storage vessel with: 38 cubic meters ≤capacity <151 cubic meters 13.1 kilopascals ≤maximum true vapor pressure of total organic HAP <76.6 kilopascals a. Reduce emissions of total organic HAP by 95 weight-percent by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS (national emission standards for closed vent systems, control devices, recovery devices, and routing to a fuel gas system or a process), as specified in § 63.982(a)(1) (storage vessel requirements) of this part; orb. Comply with the requirements of subpart WW (national emission standards for storage vessels (control level 2)) of this part.
2. A storage vessel with: 151 cubic meters ≤capacity The maximum true vapor pressure of total organic HAP is ≥5.2 kilopascals Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(1) (storage vessel requirements) of this part.
3. A storage vessel with: 38 cubic meters ≤capacity <151 cubic meters The maximum true vapor pressure of total organic HAP is ≥76.6 kilopascals Reduce emissions of total organic HAP by 95 weight-percent by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(1) (storage vessel requirements) of this part.
4. A process vent from continuous unit operations or a combined vent stream a The vent stream has a TRE b,c ≤9.6 a. Reduce emissions of total organic HAP by 98 weight-percent; or reduce total organic HAP to a concentration of 20 parts per million by volume; whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(2) (process vent requirements) of this part; and Vent emissions through a closed vent system to a halogen reduction device meeting the requirements of subpart SS, § 63.994, of this part that reduces hydrogen halides and halogens by 99 weight-percent or to less than 0.45 kilograms per hourd, d, whichever is less stringent; orb. Reduce the process vent halogen atom mass emission rate to less than 0.45 kilograms per hour by venting emissions through a closed vent system to a halogen reduction device meeting the requirements of subpart SS, § 63.994 (halogen reduction device requirements) of this part; and Reduce emissions of total organic HAP by 98 weight-percent; or reduce total organic HAP or TOC to a concentration of 20 parts per million by volume; whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of subpart SS, as specified in § 63.982(a)(2) (process vent requirements) of this part; or c. Achieve and maintain a TRE index value greater than 9.6.
5. Equipment as defined under § 63.1101 The equipment contains or contacts ≥ 5 weight-percent total organic HPA e, and operates ≥ 300 hours per year Comply with the requirements of subpart TT (national emission standards for equipment leaks (control level 1)) or subpart UU (national emission standards for equipment leaks (control level 2)) of this part.
(e) Ethylene production applicability, definitions, and requirements—
(1) Applicability—
(i) Affected source. For the ethylene production (as defined in paragraph (e)(2) of this section) source category, the affected source shall comprise all emission points listed in paragraphs (e)(1)(i) (A) through (G) of this section that are associated with an ethylene production unit that is located at a major source, as defined in section 112(a) of the Act.
(A) All storage vessels (as defined in § 63.1101) that store liquids containing organic HAP.
(B) All ethylene process vents (as defined in paragraph (e)(2) of this section) from continuous unit operations.
(C) All transfer racks (as defined in paragraph (e)(2) of this section) that load HAP-containing material.
(D) Equipment (as defined in § 63.1101) that contains or contacts organic HAP.
(E) All waste streams (as defined in paragraph (e)(2) of this section) associated with an ethylene production unit.
(F) All heat exchange systems (as defined in paragraph (e)(2) of this section) associated with an ethylene production unit.
(G) All ethylene cracking furnaces and associated decoking operations.
(ii) Exceptions. The emission points listed in paragraphs (e)(1)(ii) (A) through (L) of this section are in the ethylene production source category but are not subject to the requirements of paragraph (e)(3) of this section.
(A) Equipment that is located within an ethylene production unit that is subject to this subpart but does not contain organic HAP.
(B) Stormwater from segregated sewers.
(C) Water from fire-fighting and deluge systems in segregated sewers.
(D) Spills.
(E) Water from safety showers.
(F) Water from testing of fire-fighting and deluge systems.
(G) Vessels storing organic liquids that contain organic HAP as impurities.
(H) Transfer racks, loading arms, or loading hoses that only transfer liquids containing organic HAP as impurities.
(I) Transfer racks, loading arms, or loading hoses that vapor balance during all transfer operations.
(J) Air emissions from all ethylene cracking furnaces, including emissions during decoking operations.
(K) Pressure vessels designed to operate in excess of 204.9 kilopascals and without emissions to the atmosphere.
(L) Vessels permanently attached to motor vehicles such as trucks, railcars, barges, or ships.
(iii) Exclusions. The provisions of this subpart do not apply to process units and emission points subject to subparts F, G, H, I and CC of this part.
(iv) Compliance schedule. The compliance schedule for the ethylene production source category is specified in § 63.1102.
(2) Definitions. Ethylene process vent means a gas stream with a flow rate greater than 0.005 standard cubic meters per minute containing greater than 20 parts per million by volume HAP that is continuously discharged during operation of an ethylene production unit, as defined in this section. Ethylene process vents are gas streams that are discharged to the atmosphere (or the point of entry into a control device, if any) either directly or after passing through one or more recovery devices. Ethylene process vents do not include relief valve discharges; gaseous streams routed to a fuel gas system; leaks from equipment regulated under this subpart; episodic or nonroutine releases such as those associated with startup, shutdown, and malfunction; and in situ sampling systems (online analyzers).
Ethylene production or production unit means a chemical manufacturing process unit in which ethylene and/or propylene are produced by separation from petroleum refining process streams or by subjecting hydrocarbons to high temperatures in the presence of steam. The ethylene production unit includes the separation of ethylene and/or propylene from associated streams such as a C4 product, pyrolysis gasoline, and pyrolysis fuel oil. Ethylene production does not include the manufacture of SOCMI chemicals such as the production of butadiene from the C4 stream and aromatics from pyrolysis gasoline.
Heat exchange system means any cooling tower system or once-through cooling water system (e.g., river or pond water). A heat exchange system can include an entire recirculating or once-through cooling system.
Organic HAP means the compounds listed in Table 1 to subpart XX of this part.
Transfer rack means the collection of loading arms and loading hoses at a single loading rack that is used to fill tank trucks and/or railcars with organic HAP. Transfer rack includes the associated pumps, meters, shutoff valves, relief valves, and other piping and valves. Transfer rack does not include racks, arms, or hoses that contain organic HAP only as impurities; or racks, arms, or hoses that vapor balance during all loading operations.
Waste means any material resulting from industrial, commercial, mining, or agricultural operations, or from community activities, that is discarded or is being accumulated, stored, or physically, chemically, thermally, or biologically treated prior to being discarded, recycled, or discharged.
Waste stream means the waste generated by a particular process unit, product tank, or waste management unit. The characteristics of the waste stream (e.g., flow rate, HAP concentration, water content) are determined at the point of waste generation. Examples of a waste stream include process wastewater, product tank drawdown, sludge and slop oil removed from waste management units, and landfill leachate.
(3) Requirements. The owner or operator must control organic HAP emissions from each affected source emission point by meeting the applicable requirements specified in Table 7 to this section. An owner or operator must perform the applicability assessment procedures and methods for process vents specified in § 63.1104, except for paragraphs (d), (g), (h), (i), (j), (l)(1), and (n). An owner or operator must perform the applicability assessment procedures and methods for equipment leaks specified in § 63.1107. General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Minimization of emissions from startup, shutdown, and malfunctions must be addressed in the startup, shutdown, and malfunction plan required by § 63.1111; the plan must also establish reporting and recordkeeping of such events. Procedures for approval of alternate means of emission limitations are specified in § 63.1113.
Table 7 to § 63.1103(e) —What Are My Requirements if I Own or Operate an Ethylene Production Existing or New Affected Source?
If you own or operate . . . And if . . . Then you must . . .
(a) A storage vessel (as defined in § 63.1101) that stores liquid containing organic HAP (1) The maximum true vapor pressure of total organic HAP is ≥3.4 kilopascals but <76.6 kilopascals; and the capacity of the vessel is ≥4 cubic meters but ≤95 cubic meters (i) Fill the vessel through a submerged pipe; or(ii) Comply with the requirements for storage vessels with capacities ≥95 cubic meters.
(b) A storage vessel (as defined in § 63.1101) that stores liquid containing organic HAP (1) The maximum true vapor pressure of total organic HAP is ≥3.4 kilopascals but <76.6 kilopascals; and the capacity of the vessel is ≥95 cubic meters (i) Comply with the requirements of subpart WW of this part; or(ii) Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of control devices and meet the requirements of § 63.982(a)(1).
(c) A storage vessel (as defined in § 63.1101) that stores liquid containing organic HAP (1) The maximum true vapor pressure of total organic HAP is ≥76.6 kilopascals (i) Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of control devices and meet the requirements of § 63.982(a)(1).
(d) An ethylene process vent (as defined in paragraph (e)(2) of this section) (1) The process vent is at an existing source and the vent stream has a flow rate ≥0.011 scmm and a total organic HAP concentration ≥50 parts per million by volume; or the process vent is at a new source and the vent stream has a flow rate ≥0.008 scmm and a total organic HAP concentration ≥30 parts per million by volume (i) Reduce emissions of organic HAP by 98 weight-percent; or reduce organic HAP or TOC to a concentration of 20 parts per million by volume; whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices and meet the requirements specified in § 63.982(b) and (c)(2).
(e) A transfer rack (as defined in paragraph (e)(2) of this section) (1) Materials loaded have a true vapor pressure of total organic HAP ≥3.4 kilopascals and ≥76 cubic meters per day (averaged over any consecutive 30-day period) of HAP-containing material is loaded (i) Reduce emissions of organic HAP by 98 weight-percent; or reduce organic HAP or TOC to a concentration of 20 parts per million by volume; whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices as specified in § 63.1105; or
(ii) Install process piping designed to collect the HAP-containing vapors displaced from tank trucks or railcars during loading and to route it to a process, a fuel gas system, or a vapor balance system, as specified in § 63.1105.
(f) Equipment (as defined in § 63.1101) that contains or contacts organic HAP (1) The equipment contains or contacts ≥5 weight-percent organic HAP; and the equipment is not in vacuum service Comply with the requirements of subpart UU of this part.
(g) Processes that generate waste (as defined in paragraph (e)(2) of this section (1) The waste stream contains any of the following HAP: benzene, cumene, ethyl benzene, hexane, naphthalene, styrene, toluene, o-xylene, m-xylene, p-xylene, or 1,3-butadiene (i) Comply with the waste requirements of subpart XX of this part. For ethylene manufacturing process unit waste stream requirements, terms have the meanings specified in subpart XX.
(h) A heat exchange system (as defined in paragraph (e)(2) of this section) Comply with the heat exchange system requirements of subpart XX of this part.
(f) Carbon black production applicability, definitions, and requirements—
(1) Applicability—
(i) Affected source. For the carbon black production source category (as defined in paragraph (f)(2) of this section), the affected source shall comprise each carbon black production process unit located at a major source, as defined in section 112(a) of the Act. The affected source for the carbon black production source category includes all waste management units, maintenance wastewater, and equipment components that contain or contact HAP that are associated with the carbon black production process unit.
(ii) Compliance schedule. The compliance schedule for the carbon black production and acetylene decomposition carbon black production affected sources, as defined in paragraph (f)(1)(i) of this section, is specified in § 63.1102.
(2) Definitions. Carbon black production means the production of carbon black by either the furnace, thermal, acetylene decomposition, or lampblack processes.
Carbon black production unit means the equipment assembled and connected by hard-piping or duct work to process raw materials to manufacture, store, and transport a carbon black product. For the purposes of this subpart, a carbon black production process unit includes reactors and associated operations; associated recovery devices; and any feed, intermediate and product storage vessels, product transfer racks, and connected ducts and piping. A carbon black production process unit includes pumps, compressors, agitators, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, instrumentation systems, and control devices or systems.
Dryer means a rotary-kiln dryer that is heated externally and is used to dry wet pellets in the wet pelletization process.
Main unit filter means the filter that separates the carbon black from the tailgas.
Process filter means the filter that separates the carbon black from the conveying air.
Purge filter means the filter that separates the carbon black from the dryer exhaust.
(3) Requirements.
(i) Table 8 to this section specifies the carbon black production standards applicability for existing and new sources. Applicability assessment procedures and methods are specified in § 63.1104. An owner or operator of an affected source is not required to perform applicability tests or other applicability assessment procedures if they opt to comply with the most stringent requirements for an applicable emission point pursuant to this subpart. General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Procedures for approval of alternative means of emission limitations are specified in § 63.1113.
(ii) Pressure relief devices used to protect against overpressure in the case of catastrophic failure of your process filter system are exempt from the closed vent system inspection requirements of § 63.983(b) and (c). Exempt pressure relief devices must be designated and identified in your Notification of Compliance Status report.
Table 8 to § 63.1103(f) —What Are My Requirements if I Own or Operate a Carbon Black Production Existing or New Affected Source?
If you own or operate . . . And if . . . Then you must . . .
a The weight-percent organic HAP is determined according to the procedures specified in § 63.1104(e).
(a) A carbon black production main unit filter process vent (1) The HAP concentration of the emission stream is equal to or greater than 260 parts per million by volume a (i) Reduce emissions of HAP by using a flare meeting the requirements of subpart SS of this part; or(ii) Reduce emissions of total HAP by 98 weight-percent or to a concentration of 20 parts per million by volume, whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of § 63.982(a)(2).
(g) Cyanide chemicals manufacturing applicability, definitions, and requirements—
(1) Applicability—
(i) Affected source. For the cyanide chemicals manufacturing source category, the affected source shall include each cyanide chemicals manufacturing process unit located at a major source, as defined in section 112(a) of the Act. The affected source shall also include all waste management units, maintenance wastewater, and equipment (as defined in § 63.1101) that contain or contact cyanide chemicals that are associated with the cyanide chemicals manufacturing process unit.
(ii) Compliance schedule. The compliance schedule for the affected source, as defined in paragraph (f)(1)(i) of this section, is specified in § 63.1102.
(2) Definitions. Andrussow process unit means a process unit that produces hydrogen cyanide by reacting methane and ammonia in the presence of oxygen over a platinum/rhodium catalyst. An Andrussow process unit begins at the point at which the raw materials are stored and ends at the point at which refined hydrogen cyanide is reacted as a raw material in a downstream process, burned on-site as fuel in a boiler or industrial furnace, or is shipped offsite. If raw hydrogen cyanide from the reactor is reacted with sodium hydroxide to form sodium cyanide prior to the refining process, the unit operation where sodium cyanide is formed is considered to be part of the Andrussow process unit.
Blausaure Methane Anlage (BMA) process unit means a process unit that produces hydrogen cyanide by reacting methane and ammonia over a platinum catalyst. A BMA process unit begins at the point at which raw materials are stored and ends at the point at which refined hydrogen cyanide is reacted as a raw material in a downstream process, burned on-site as a fuel in a boiler or industrial furnace, or is shipped offsite. If raw hydrogen cyanide from the reactor is reacted with sodium hydroxide to form sodium cyanide prior to the refining process, the unit operation where sodium cyanide is formed is considered to be part of the BMA process unit.
Byproduct means a chemical that is produced coincidentally during the production of another chemical.
Cyanide chemicals manufacturing process unit or CCMPU means the equipment assembled and connected by hard-piping or duct work to process raw materials to manufacture, store, and transport a cyanide chemicals product. A cyanide chemicals manufacturing process unit shall be limited to any one of the following: an Andrussow process unit, a BMA process unit, a sodium cyanide process unit, or a Sohio hydrogen cyanide process unit. For the purpose of this subpart, a cyanide chemicals manufacturing process unit includes reactors and associated unit operations; associated recovery devices; and any feed, intermediate and product storage vessels, product transfer racks, and connected ducts and piping. A cyanide chemicals manufacturing process unit includes pumps, compressors, agitators, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, instrumentation systems, and control devices or systems.
Cyanide chemicals product means either hydrogen cyanide, potassium cyanide, or sodium cyanide which is manufactured as the intended product of a CCMPU or a byproduct of the Sohio process. Other hydrogen cyanide, potassium cyanide, or sodium cyanide byproducts, impurities, wastes, and trace contaminants are not considered to be cyanide chemicals products.
Dry-end process vent means a process vent originating from the drum filter or any other unit operation in the dry end of a sodium cyanide manufacturing process unit. For the purposes of this subpart, the dry end of the sodium cyanide process unit begins in the unit operation where water is removed from the sodium cyanide, usually in the drum filter, and ends when the sodium cyanide is used as a raw material in a downstream process, or is shipped offsite.
Organic HAP means, for purposes of applicability of the requirements of this subpart, all hydrogen cyanide compounds.
Raw hydrogen cyanide means hydrogen cyanide that has not been through the refining process. Raw hydrogen cyanide usually has a hydrogen cyanide concentration less than 10 percent.
Refined hydrogen cyanide means hydrogen cyanide that has been through the refining process. Refined hydrogen cyanide usually has a hydrogen cyanide concentration greater than 99 percent.
Refining process means the collection of equipment in a cyanide chemicals manufacturing processing unit used to concentrate raw hydrogen cyanide from a concentration around 10 percent or less to refined hydrogen cyanide at a concentration greater than 99 percent.
Sodium cyanide process unit means a process unit that produces sodium cyanide by reacting hydrogen cyanide and sodium hydroxide via the neutralization, or wet, process. A sodium cyanide process unit begins at the unit operation where refined hydrogen cyanide is reacted with sodium hydroxide and ends at the point the solid sodium cyanide product is shipped offsite or used as a raw material in a downstream process. If raw hydrogen cyanide is reacted with sodium hydroxide to form sodium cyanide prior to the hydrogen cyanide refining process, the unit operation where sodium cyanide is formed is not considered to be part of the sodium cyanide process unit. For this type of process, the sodium cyanide process unit begins at the point that the aqueous sodium cyanide stream leaves the unit operation where the sodium cyanide is formed. In situations where potassium hydroxide is substituted for sodium hydroxide to produce potassium cyanide, the process unit is still considered a sodium cyanide process unit.
Sohio hydrogen cyanide process unit means a process unit that produces hydrogen cyanide as a byproduct of the acrylonitrile production process when acrylonitrile is manufactured using the Sohio process. A Sohio hydrogen cyanide process unit begins at the point the hydrogen cyanide leaves the unit operation where the hydrogen cyanide is separated from the acrylonitrile (usually referred to as the heads column). The Sohio hydrogen cyanide process unit ends at the point refined hydrogen cyanide is reacted as a raw material in a downstream process, burned on-site as fuel in a boiler or industrial furnace, or is shipped offsite. If raw hydrogen cyanide is reacted with sodium hydroxide to form sodium cyanide prior to the refining process, the unit operation where sodium cyanide is formed is considered to be part of the Sohio hydrogen cyanide process unit.
Wet-end process vent means a process vent originating from the reactor, crystallizer, or any other unit operation in the wet end of the sodium cyanide process unit. For the purposes of this subpart, the wet end of the sodium cyanide process unit begins at the point at which the raw materials are stored and ends just prior to the unit operation where water is removed from the sodium cyanide, usually in the drum filter. Wastewater streams containing discarded wastewater from the sodium cyanide production process are not considered to be part of the wet-end sodium cyanide process. Discarded wastewater that is no longer used in the production process is considered to be process and/or maintenance wastewater. Vents from process and maintenance wastewater operations are not wet-end process vents.
(3) Requirements. Table 9 to this section specifies the cyanide chemicals manufacturing standards applicable to existing and new sources. Applicability assessment procedures and methods are specified in § 63.1104. An owner or operator of an affected source is not required to perform applicability tests or other applicability assessment procedures if they opt to comply with the most stringent requirements for an applicable emission point pursuant to this subpart. General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Procedures for approval of alternative means of emission limitations are specified in § 63.1113.
(4) Determination of overall HAP emission reduction for a process unit.
(i) The owner or operator shall determine the overall HAP emission reduction for process vents in a process unit using Equation 1 of this section. The overall organic HAP emission reduction shall be determined for all process vents in the process unit.
Where:
REDCCMPU=Overall HAP emission reduction for the group of process vents in the CCMPU, percent.
Eunc,i=Uncontrolled HAP emissions from process vent i that is controlled by using a combustion, recovery, or recapture device, kg/yr.
n=Number of process vents in the process unit that are controlled by using a combustion, recovery, or recapture device.
Ri=Control efficiency of the combustion, recovery, or recapture device used to control HAP emissions from vent i, determined in accordance with paragraph (g)(4)(ii) of this section.
Eunc,j=Uncontrolled HAP emissions from process vent j that is not controlled by using a combustion, recovery, or recapture device, kg/yr.
m=Number of process vents in the process unit that are not controlled by using a combustion, recovery, or recapture device.
(ii) The control efficiency shall be assigned as specified in paragraph (g)(4)(ii) (A) or (B) of this section.
(A) If the process vent is controlled using a flare in accordance with the provisions of § 63.987, or a combustion device in accordance with the provisions of § 63.988(b)(2), for which a performance test has not been conducted, the control efficiency shall be assumed to be 98 weight-percent. For hydrogen-fueled flares, an owner or operator may use a control efficiency greater than 98 weight-percent if they can provide engineering calculations and supporting information demonstrating a greater control efficiency.
(B) If the process vent is controlled using a combustion, recovery, or recapture device for which a performance test has been conducted in accordance with the provisions of § 63.997, the control efficiency shall be the efficiency determined by the performance test.
(5) Source category specific modifications to testing procedures.
(i) When identifying equipment subject to any equipment leak requirements, an owner or operator is allowed to designate specific components of such equipment as never being safe to monitor with their Notification of Compliance Status report and periodic compliance reports. In order for an owner or operator to designate such equipment as never being safe to monitor, they must certify that monitoring such equipment at any time the CCMPU is operating is never safe (e.g., monitoring this equipment would present an unreasonable hazard or preclude testing personnel from meeting emergency evacuation requirements). If it is demonstrated to the Administrator's satisfaction that equipment designated by the owner or operator as never safe to monitor is appropriately designated, an owner or operator will not be required to monitor such equipment.
(ii) For process vent hydrogen cyanide emissions that are vented to a control device other than a flare during startup, shutdown, and malfunction, the design evaluation must include documentation that the control device being used achieves the required control efficiency during the reasonably expected maximum flow rate and emission rate during startup, shutdown, and malfunction.
(iii) If a facility controls process vent emissions during startup, shutdown, and malfunction by using a flare, an owner or operator is not required to perform flow rate and heat content testing as specified in § 63.987(b)(3)(ii) and (iii). In lieu of performing flow rate and heat content testing, an owner or operator is required to submit engineering calculations that substantiate that a flare meets the applicable heat content or flow rates, or provide data from a compliance assessment that the flare is in compliance under worst case conditions (e.g., maximum operating conditions).
(iv) If flare velocity and net heating value testing, as specified in § 63.11(b)(6)(ii) and (b)(7)(i), would create an unreasonable hazard for testing personnel, an owner or operator is allowed to submit engineering calculations that substantiate vent stream velocity and heat content of a flare in lieu of test data. These calculations are required to be submitted with the facilities' compliance test notification report for approval by the Administrator.
(v) The data from any performance test method used to measure HCN concentrations must be validated using EPA Method 301 (40 CFR part 63, appendix A).
Table 9 to § 63.1103(g) —What Are My Requirements if I Own or Operate a Cyanide Chemicals Manufacturing Existing or New Affected Source?
If you own or operate . . . And if . . . Then you must . . .
(a) A storage vessel (1) The storage vessel contains refined hydrogen cyanide (i) Reduce emissions of hydrogen cyanide by using a flare meeting the requirements of § 63.982(b); or(ii) Reduce emissions of hydrogen cyanide by 98 weight-percent, or to a concentration of 20 parts per million by volume, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of § 63.982(c)(1) or (d).
(b) A process vent from a continuous unit operations in an Andrussow, BMA, or Sohio hydrogen cyanide process unit (i) Reduce overall annual emissions of total HAP from the collection of process vents from continuous unit operations in the process by 98 weight-percent in accordance with paragraph (g)(4) of this section. Any control device used to reduce emissions from one or more process vents from continuous unit operations in the process unit must meet the applicable requirements specified in § 63.982(a)(2); or
(ii) Reduce emissions of total HAP from each process vent from a continuous unit operation in the process unit by using a flare meeting the requirements specified in § 63.982(b); or
(iii) Reduce emissions of total HAP from each process vent from a continuous unit operation in the process unit by 98 weight-percent or to a concentration of 20 parts per million by volume, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of § 63.982(c)(2) or (d).
(c) One or more wet end process vents, as defined in paragraph (g)(2) of this section, in a sodium cyanide process unit (i) Reduce overall annual emissions of total HAP from the collection of process vents from continuous unit operations in the process unit by 98 weight-percent in accordance with paragraph (g)(4) of this section. Any control device used to reduce emissions from one or more process vents from continuous unit operations in the process unit must meet the applicable requirements of § 63.982(a)(2); or
(ii) Reduce emissions of total HAP from each wet-end process vent in the process unit by using a flare meeting the requirements of § 63.982(b); or
(iii) Reduce emissions of total HAP from each wet-end process vent by 98 weight-percent, or to a concentration of 20 parts per million by volume, by venting emissions through a closed vent system and any combination of control devices meeting the requirements of § 63.982(c)(2) or (d).
(d) One or more dry end process vents, as defined in paragraph (g)(2) of this section, in a sodium cyanide process unit (i) Reduce overall annual emissions of sodium cyanide from the collection of process vents from continuous unit operations in the process unit by 98 weight-percent in accordance with paragraph (g)(4) of this section. Any control device used to reduce emissions from one or more process vents from continuous unit operations in the process unit must meet the applicable requirements of § 63.982(a)(2); or
(ii) Reduce emissions of sodium cyanide from each dry-end process vent in the process unit by 98 weight-percent by venting emissions through a closed vent system to any combination of control devices meeting the requirements of § 63.982(c)(2) or (d).
(e) A transfer rack (1) The transfer rack is used to load refined hydrogen cyanide into tank trucks and/or rail cars (i) Reduce emissions of hydrogen cyanide by using a flare meeting the requirements of § 63.982(b); or(ii) Reduce emissions of hydrogen cyanide by 98 weight-percent, or to a concentration of 20 parts per million by volume, whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements specified in § 63.982(c)(1), (c)(2), or (d).
(f) A new cyanide chemicals manufacturing process unit that generates process wastewater (1) The process wastewater is from HCN purification, ammonia purification, or flare blowdown (i) Achieve a combined removal and control of HAP from wastewater of 93 weight-percent.
(g) A cyanide chemicals manufacturing process unit that generates maintenance wastewater (1) The maintenance wastewater contains hydrogen cyanide or acetonitrile (i) Comply with the requirements of § 63.1106(b).
(h) An item of equipment listed in § 63.1106(c)(1) that transports or contains wastewater liquid streams from a cyanide chemicals manufacturing process unit (1) The item of equipment meets the criteria specified in § 63.1106(c)(1) through (3) and either (c)(4)(i) or (ii) (i) Comply with the requirements in Table 35 of subpart G of this part.
(i) Equipment, as defined under § 63.1101 (1) The equipment contains or contacts hydrogen cyanide and operates equal to or greater then 300 hours per year (i) Comply with either subpart TT or UU of this part, and paragraph (g)(5) of this section, with the exception that open-ended lines that contain or contact hydrogen cyanide are exempt from any requirements to install a cap, plug, blind flange, or second valve to be capped.
(h) Spandex production applicability, definitions, and requirements—
(1) Applicability—
(i) Affected source. For the spandex production (as defined in paragraph (h)(2) of this section) source category, the affected source shall comprise all emission points listed in paragraphs (h)(1)(i)(A) through (C) of this section that are associated with a spandex production process unit located at a major source, as defined in section 112(a) of the Act.
(A) All process vents (as defined in § 63.1101).
(B) All storage vessels (as defined in § 63.1101) that store liquids containing organic HAP.
(C) All spandex fiber spinning lines using a spinning solution having organic HAP.
(ii) Exceptions. The emission points listed in paragraphs (h)(1)(ii)(A) and (B) of this section are in the spandex production source category but are not subject to the requirements of paragraph (h)(3) of this section.
(A) Equipment that is located within a spandex production process unit that is subject to this subpart but does not contain organic HAP.
(B) Vessels storing organic liquids that contain organic HAP as impurities.
(C) Emission points listed in paragraphs (h)(1)(i)(A) through (C) of this section that are associated with a dry spinning spandex production process unit.
(iii) Compliance schedule. The compliance schedule for affected sources, as defined in paragraph (h)(1)(i) of this section, is specified in paragraph (b) of § 63.1102.
(2) Definitions. Dry spinning means a fiber-forming process where prepolymer is reacted with a chain-extender to generate polymer prior to spinning; the polymer is dissolved in a solvent and is extruded into a cell of hot gases for fiber formation.
Fiber spinning line means the group of equipment and process vents associated with spandex fiber spinning operations. The fiber spinning line includes the blending and dissolving tanks, spinning solution filters, spinning units, spin bath tanks, and the equipment used downstream of the spin bath to wash, draw, or dry on the wet belt the spun fiber.
Reaction spinning means a fiber-forming process where prepolymer is extruded into a spin bath that contains a chain-extender; the chemical reaction to make polymer occurs simultaneously with extrusion/fiber formation.
Spandex or spandex fiber means a manufactured synthetic fiber in which the fiber-forming substance is a long-chain polymer comprised of at least 85 percent by mass of a segmented polyurethane.
Spandex production means the production of synthetic spandex fibers.
Spandex production process unit means a process unit that is specifically used for the production of synthetic spandex fibers.
(3) Requirements. Table 10 to this section specifies the spandex production source category requirements for new and existing sources. An owner or operator must perform the applicability assessment procedures and methods for process vents specified in § 63.1104, excluding paragraphs (b)(1), (d), (g), (h), (i), (j), (l)(1), and (n). General compliance, recordkeeping, and reporting requirements are specified in §§ 63.1108 through 63.1112. Minimization of emissions from startup, shutdown, and malfunctions must be addressed in the startup, shutdown, and malfunction plan required by § 63.1111; the plan must also establish reporting and recordkeeping of such events. Procedures for approval of alternate means of emission limitations are specified in § 63.1113.
Table 10 to § 63.1103(h) —What Are My Requirements if I Own or Operate a Spandex Production Process Unit at a New or Existing Source?
If you own or operate . . . And if . . . Then you must . . .
(a) A storage vessel (as defined in § 63.1101) that stores liquid containing organic HAP (1) The maximum true vapor pressure of the organic HAP is ≥ 3.4 kilopascals; and the capacity of the vessel is ≥ 47 cubic meters (i) Comply with the requirements of subpart WW of this part; or(ii) Reduce emissions of organic HAP by 95 weight-percent by venting emissions in through a closed vent system to any combination of control devices meeting the requirements of subpart SS of this part, as specified in § 63.982(a)(1).
(b) A process vent Reduce emissions of organic HAP by 95 weight-percent, or reduce organic HAP or TOC to a concentration of 20 parts per million by volume, whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices meeting the requirements of § 63.982(a)(2).
(c) A fiber spinning line Operate the fiber spinning line such that emissions are captured and vented through a line closed vent system to a control device that complies with the requirements of § 63.982(a)(2). If a control device other than a flare is used, HAP emissions must be reduced by 95 weight-percent, or total organic HAP or TOC must be reduced to a concentration of 20 parts per million by volume, whichever is less stringent.
[64 FR 34921, June 29, 1999, as amended at 64 FR 63699, 63706, Nov. 22, 1999; 64 FR 71852, Dec. 22, 1999; 66 FR 55847, Nov. 2, 2001; 67 FR 39305, June 7, 2002; 67 FR 46281, July 12, 2002; 67 FR 46293, July 12, 2002; 70 FR 19272, Apr. 13, 2005]

Title 40 published on 2014-07-01

The following are only the Rules published in the Federal Register after the published date of Title 40.

For a complete list of all Rules, Proposed Rules, and Notices view the Rulemaking tab.

  • 2014-11-19; vol. 79 # 223 - Wednesday, November 19, 2014
    1. 79 FR 68777 - Reconsideration of Certain Startup/Shutdown Issues: National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam Generating Units
      GPO FDSys XML | Text
      ENVIRONMENTAL PROTECTION AGENCY
      Final rule; notice of final action on reconsideration.
      The effective date of the rule is November 19, 2014.
      40 CFR Parts 60 and 63

This is a list of United States Code sections, Statutes at Large, Public Laws, and Presidential Documents, which provide rulemaking authority for this CFR Part.

This list is taken from the Parallel Table of Authorities and Rules provided by GPO [Government Printing Office].

It is not guaranteed to be accurate or up-to-date, though we do refresh the database weekly. More limitations on accuracy are described at the GPO site.


United States Code

Title 40 published on 2014-07-01

The following are ALL rules, proposed rules, and notices (chronologically) published in the Federal Register relating to 40 CFR 63 after this date.

  • 2014-11-19; vol. 79 # 223 - Wednesday, November 19, 2014
    1. 79 FR 68777 - Reconsideration of Certain Startup/Shutdown Issues: National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam Generating Units
      GPO FDSys XML | Text
      ENVIRONMENTAL PROTECTION AGENCY
      Final rule; notice of final action on reconsideration.
      The effective date of the rule is November 19, 2014.
      40 CFR Parts 60 and 63