10 CFR 429.70 - Alternative methods for determining energy efficiency and energy use.

Beta! The text on the eCFR tab represents the unofficial eCFR text at ecfr.gov.
§ 429.70 Alternative methods for determining energy efficiency and energy use.

(a) General applicability of an AEDM. A manufacturer of covered products or covered equipment explicitly authorized to use an AEDM in §§ 429.14 through 429.62 may not distribute any basic model of such equipment in commerce unless the manufacturer has determined the energy efficiency of the basic model, either from testing the basic model in conjunction with DOE's certification sampling plans and statistics or from applying an alternative method for determining energy efficiency or energy use (AEDM) to the basic model, in accordance with the requirements of this section. In instances where a manufacturer has tested a basic model, the manufacturer may not knowingly use an AEDM to overrate the efficiency (or underrate the consumption) of the model.

(b) Testing. Testing for each covered product or covered equipment must be done in accordance with the sampling plan provisions established in § 429.11 and the testing procedures in parts 430 and 431 of this chapter.

(c) Alternative efficiency determination method (AEDM) for commercial HVAC (includes commercial warm air furnaces and commercial packaged boilers), WH, and refrigeration equipment -

(1) Criteria an AEDM must satisfy. A manufacturer may not apply an AEDM to a basic model to determine its efficiency pursuant to this section unless:

(i) The AEDM is derived from a mathematical model that estimates the energy efficiency or energy consumption characteristics of the basic model as measured by the applicable DOE test procedure;

(ii) The AEDM is based on engineering or statistical analysis, computer simulation or modeling, or other analytic evaluation of performance data; and

(iii) The manufacturer has validated the AEDM, in accordance with paragraph (c)(2) of this section with basic models that meet the current Federal energy conservation standards.

(2) Validation of an AEDM. Before using an AEDM, the manufacturer must validate the AEDM's accuracy and reliability as follows:

(i) The manufacturer must select at least the minimum number of basic models for each validation class specified in paragraph (c)(2)(iv) of this section to which the particular AEDM applies. Using the AEDM, calculate the energy use or efficiency for each of the selected basic models. Test a single unit of each selected basic model in accordance with paragraph (c)(2)(iii) of this section. Compare the results from the single unit test and the AEDM energy use or efficiency output according to paragraph (c)(2)(ii) of this section. The manufacturer is responsible for ensuring the accuracy and reliability of the AEDM.

(ii) Individual model tolerances.

(A) For those covered products with an energy-efficiency metric, the predicted efficiency for each model calculated by applying the AEDM may not be more than five percent greater than the efficiency determined from the corresponding test of the model.

(B) For those covered products with an energy-consumption metric, the predicted energy consumption for each model, calculated by applying the AEDM, may not be more than five percent less than the energy consumption determined from the corresponding test of the model.

(C) For all covered products, the predicted energy efficiency or consumption for each model calculated by applying the AEDM must meet or exceed the applicable federal energy conservation performance standard.

(iii) Additional test unit requirements.

(A) Each AEDM must be supported by test data obtained from physical tests of current models; and

(B) Test results used to validate the AEDM must meet or exceed current, applicable Federal standards as specified in part 431 of this chapter; and

(C) Each test must have been performed in accordance with the DOE test procedure specified in parts 430 or 431 of this chapter or test procedure waiver for which compliance is required at the time the basic model is distributed in commerce.

(iv) Validation classes.

Validation class Minimum number of distinct models that must be tested per AEDM
Air-Cooled, Split and Packaged Air Conditioners (ACs) and Heat Pumps (HPs) less than 65,000 Btu/h Cooling Capacity (3-Phase) 2 Basic Models.
(A) Commercial HVAC validation classes
Air-Cooled, Split and Packaged ACs and HPs greater than or equal to 65,000 Btu/h Cooling Capacity and Less than 760,000 Btu/h Cooling Capacity 2 Basic Models.
Water-Cooled, Split and Packaged ACs and HPs, All Cooling Capacities 2 Basic Models.
Evaporatively-Cooled, Split and Packaged ACs and HPs, All Capacities 2 Basic Models.
Water-Source HPs, All Capacities 2 Basic Models.
Single Package Vertical ACs and HPs 2 Basic Models.
Packaged Terminal ACs and HPs 2 Basic Models.
Air-Cooled, Variable Refrigerant Flow ACs and HPs 2 Basic Models.
Water-Cooled, Variable Refrigerant Flow ACs and HPs 2 Basic Models.
Computer Room Air Conditioners, Air Cooled 2 Basic Models.
Computer Room Air Conditioners, Water-Cooled 2 Basic Models.
(B) Commercial water heater validation classes
Gas-fired Water Heaters and Hot Water Supply Boilers Less than 10 Gallons 2 Basic Models.
Gas-fired Water Heaters and Hot Water Supply Boilers Greater than or Equal to 10 Gallons 2 Basic Models.
Oil-fired Water Heaters and Hot Water Supply Boilers Less than 10 Gallons 2 Basic Models.
Oil-fired Water Heaters and Hot Water Supply Boilers Greater than or Equal to 10 Gallons 2 Basic Models.
Electric Water Heaters 2 Basic Models.
Heat Pump Water Heaters 2 Basic Models.
Unfired Hot Water Storage Tanks 2 Basic Models.
(C) Commercial packaged boilers validation classes
Gas-fired, Hot Water Only Commercial Packaged Boilers 2 Basic Models.
Gas-fired, Steam Only Commercial Packaged Boilers 2 Basic Models.
Gas-fired Hot Water/Steam Commercial Packaged Boilers 2 Basic Models.
Oil-fired, Hot Water Only Commercial Packaged Boilers 2 Basic Models.
Oil-fired, Steam Only Commercial Packaged Boilers 2 Basic Models.
Oil-fired Hot Water/Steam Commercial Packaged Boilers 2 Basic Models.
(D) Commercial furnace validation classes
Gas-fired Furnaces 2 Basic Models.
Oil-fired Furnaces 2 Basic Models.
(E) Commercial refrigeration equipment validation classes
Self-Contained Open Refrigerators 2 Basic Models.
Self-Contained Open Freezers 2 Basic Models.
Remote Condensing Open Refrigerators 2 Basic Models.
Remote Condensing Open Freezers 2 Basic Models.
Self-Contained Closed Refrigerators 2 Basic Models.
Self-Contained Closed Freezers 2 Basic Models.
Remote Condensing Closed Refrigerators 2 Basic Models.
Remote Condensing Closed Freezers 2 Basic Models.

1 The minimum number of tests indicated above must be comprised of a transparent model, a solid model, a vertical model, a semi-vertical model, a horizontal model, and a service-over-the counter model, as applicable based on the equipment offering. However, manufacturers do not need to include all types of these models if it will increase the minimum number of tests that need to be conducted.

(3) AEDM records retention requirements. If a manufacturer has used an AEDM to determine representative values pursuant to this section, the manufacturer must have available upon request for inspection by the Department records showing:

(i) The AEDM, including the mathematical model, the engineering or statistical analysis, and/or computer simulation or modeling that is the basis of the AEDM;

(ii) Product information, complete test data, AEDM calculations, and the statistical comparisons from the units tested that were used to validate the AEDM pursuant to paragraph (c)(2) of this section; and

(iii) Product information and AEDM calculations for each basic model to which the AEDM has been applied.

(4) Additional AEDM requirements. If requested by the Department and at DOE's discretion, the manufacturer must perform at least one of the following:

(i) Conduct simulations before representatives of the Department to predict the performance of particular basic models of the product to which the AEDM was applied;

(ii) Provide analyses of previous simulations conducted by the manufacturer; or

(iii) Conduct certification testing of basic models selected by the Department.

(5) AEDM verification testing. DOE may use the test data for a given individual model generated pursuant to § 429.104 to verify the certified rating determined by an AEDM as long as the following process is followed:

(i) Selection of units. DOE will obtain units for test from retail, where available. If units cannot be obtained from retail, DOE will request that a unit be provided by the manufacturer;

(ii) Lab requirements. DOE will conduct testing at an independent, third-party testing facility of its choosing. In cases where no third-party laboratory is capable of testing the equipment, it may be tested at a manufacturer's facility upon DOE's request.

(iii) Manufacturer participation.

(A) Except when testing variable refrigerant flow systems (which are governed by the rules found at § 431.96(f)), testing will be completed without a manufacturer representative on-site. In limited instances further described in paragraph (c)(5)(iii)(B) of this section, a manufacturer and DOE representative may be present to witness the test set-up.

(B) A manufacturer's representative may request to be on-site to witness the test set-up if:

(1) The installation manual for the basic model specifically requires it to be started only by a factory-trained installer; or

(2) The manufacturer has elected, as part of the certification of that basic model, to have the opportunity to witness the test set-up. A manufacturer may elect to witness the test set-up for the initial verification test for no more than 10 percent of the manufacturer's basic models submitted for certification and rated with an AEDM per validation class specified in section (c)(2)(iv) of this paragraph. The 10-percent limit applies to all of the eligible basic models submitted for certification by a given manufacturer no matter how many AEDMs a manufacturer has used to develop its ratings. The 10-percent limit is determined by first calculating 10 percent of the total number of basic models rated with an AEDM per validation class, and then truncating the resulting product. Manufacturers who have submitted fewer than 10 basic models rated with an AEDM for certification may elect to have the opportunity to witness the test set-up of one basic model. A manufacturer must identify the basic models it wishes to witness as part of its certification report(s) prior to the basic model being selected for verification testing.

(3) In those instances in which a manufacturer has not provided the required information as specified in § 429.12(b)(13) for a given basic model that has been rated and certified as compliant with the applicable standards, a manufacturer is precluded from witnessing the testing set up for that basic model.

(C) A DOE representative will be present for the test set-up in all cases where a manufacturer representative requests to be on-site for the test set-up. The manufacturer's representative cannot communicate with a lab representative outside of the DOE representative's presence.

(D) If DOE has obtained through retail channels a unit for test that meets either of the conditions in paragraph (c)(5)(iii)(B) of this section, DOE will notify the manufacturer that the basic model was selected for testing and that the manufacturer may have a representative present for the test set-up. If the manufacturer does not respond within five calendar days of receipt of that notification, the manufacturer waives the option to be present for test set-up, and DOE will proceed with the test set-up without a manufacturer's representative present.

(E) If DOE has obtained directly from the manufacturer a unit for test that meets either of the conditions in paragraph (c)(5)(iii)(B) of this section, DOE will notify the manufacturer of the option to be present for the test set-up at the time the unit is purchased. DOE will specify the date (not less than five calendar days) by which the manufacturer must notify DOE whether a manufacturer's representative will be present. If the manufacturer does not notify DOE by the date specified, the manufacturer waives the option to be present for the test set-up, and DOE will proceed with the test set-up without a manufacturer's representative present.

(F) DOE will review the certification submissions from the manufacturer that were on file as of the date DOE purchased a basic model (under paragraph (c)(5)(iii)(D) of this section) or the date DOE notifies the manufacturer that the basic model has been selected for testing (under paragraph (c)(5)(iii)(E) of this section) to determine if the manufacturer has indicated that it intends to witness the test set-up of the selected basic model. DOE will also verify that the manufacturer has not exceeded the allowable limit of witness testing selections as specified in paragraph (c)(5)(iii)(B)(2) of this section. If DOE discovers that the manufacturer exceeded the limits specified in paragraph (c)(5)(iii)(B)(2), DOE will notify the manufacturer of this fact and deny its request to be present for the test set-up of the selected basic model. The manufacturer must update its certification submission to ensure it has not exceeded the allowable limit of witness testing selections as specified in paragraph (c)(5)(iii)(B)(2) to be present at set-up for future selections. At this time DOE will also review the supplemental PDF submission(s) for the selected basic model to determine that all necessary information has been provided to the Department.

(G) If DOE determines, pursuant to paragraph (c)(5)(ii) of this section, that the model should be tested at the manufacturer's facility, a DOE representative will be present on site to observe the test set-up and testing with the manufacturer's representative. All testing will be conducted at DOE's direction, which may include DOE-contracted personnel from a third-party lab, as well as the manufacturer's technicians.

(H) As further explained in paragraph (c)(5)(v)(B) of this section, if a manufacturer's representative is present for the initial test set-up for any reason, the manufacturer forfeits any opportunity to request a retest of the basic model. Furthermore, if the manufacturer requests to be on-site for test set-up pursuant to paragraph (c)(5)(iii)(B) of this section but is not present on site, the manufacturer forfeits any opportunity to request a retest of the basic model.

(iv) Testing. At no time during verification testing may the lab and the manufacturer communicate without DOE authorization. All verification testing will be conducted in accordance with the applicable DOE test procedure, as well as each of the following to the extent that they apply:

(A) Any active test procedure waivers that have been granted for the basic model;

(B) Any test procedure guidance that has been issued by DOE;

(C) The installation and operations manual that is shipped with the unit;

(D) Any additional information that was provided by the manufacturer at the time of certification (prior to DOE obtaining the unit for test); and

(E) If during test set-up or testing, the lab indicates to DOE that it needs additional information regarding a given basic model in order to test in accordance with the applicable DOE test procedure, DOE may organize a meeting between DOE, the manufacturer and the lab to provide such information.

(v) Failure to meet certified rating. If a model tests worse than its certified rating by an amount exceeding the tolerance prescribed in paragraph (c)(5)(vi) of this section, DOE will notify the manufacturer. DOE will provide the manufacturer with all documentation related to the test set up, test conditions, and test results for the unit. Within the timeframe allotted by DOE, the manufacturer may then:

(A) Present all claims regarding testing validity; and

(B) If the manufacturer was not on site for the initial test set-up, request a retest of the previously tested unit with manufacturer and DOE representatives on-site for the test set-up. DOE will not conduct the retest using a different unit of the same basic model unless DOE and the manufacturer determine it is necessary based on the test results, claims presented, and DOE regulations.

(vi) Tolerances.

(A) For consumption metrics, the result from a DOE verification test must be less than or equal to the certified rating × (1 the applicable tolerance).

(B) For efficiency metrics, the result from a DOE verification test must be greater than or equal to the certified rating × (1 − the applicable tolerance).

Equipment Metric Applicable
tolerance
Commercial Packaged Boilers Combustion Efficiency
Thermal Efficiency
5% (0.05)
5% (0.05)
Commercial Water Heaters or Hot Water Supply Boilers Thermal Efficiency
Standby Loss
5% (0.05)
10% (0.1)
Unfired Storage Tanks R-Value 10% (0.1)
Air-Cooled, Split and Packaged ACs and HPs less than 65,000 Btu/h Seasonal Energy-Efficiency Ratio 5% (0.05)
Cooling Capacity (3-Phase) Heating Season Performance Factor
Energy Efficiency Ratio
5% (0.05)
10% (0.1)
Air-Cooled, Split and Packaged ACs and HPs greater than or equal to 65,000 Btu/h Cooling Capacity and Less than 760,000 Btu/h Cooling Capacity Energy Efficiency Ratio
Coefficient of Performance
Integrated Energy Efficiency Ratio
5% (0.05)
5% (0.05)
10% (0.1)
Water-Cooled, Split and Packaged ACs and HPs, All Cooling Capacities Energy Efficiency Ratio
Coefficient of Performance
Integrated Energy Efficiency Ratio
5% (0.05)
5% (0.05)
10% (0.1)
Evaporatively-Cooled, Split and Packaged ACs and HPs, All Capacities Energy Efficiency Ratio
Coefficient of Performance
Integrated Energy Efficiency Ratio
5% (0.05)
5% (0.05)
10% (0.1)
Water-Source HPs, All Capacities Energy Efficiency Ratio
Coefficient of Performance
Integrated Energy Efficiency Ratio
5% (0.05)
5% (0.05)
10% (0.1)
Single Package Vertical ACs and HPs Energy Efficiency Ratio
Coefficient of Performance
5% (0.05)
5% (0.05)
Packaged Terminal ACs and HPs Energy Efficiency Ratio
Coefficient of Performance
5% (0.05)
5% (0.05)
Variable Refrigerant Flow ACs and HPs Energy Efficiency Ratio
Coefficient of Performance
Integrated Energy Efficiency Ratio
5% (0.05)
5% (0.05)
10% (0.1)
Computer Room Air Conditioners Sensible Coefficient of Performance 5% (0.05)
Commercial Warm-Air Furnaces Thermal Efficiency 5% (0.05)
Commercial Refrigeration Equipment Daily Energy Consumption 5% (0.05)

(vii) Invalid rating. If, following discussions with the manufacturer and a retest where applicable, DOE determines that the verification testing was conducted appropriately in accordance with the DOE test procedure, DOE will issue a determination that the rating for the model is invalid. The manufacturer must elect, within 15 days, one of the following to be completed in a time frame specified by DOE, which is never to exceed 180 days:

(A) Re-rate and re-certify the model based on DOE's test data alone; or

(B) Discontinue the model through the certification process; or

(C) Conduct additional testing and re-rate and re-certify the basic model based on all test data collected, including DOE's test data.

(viii) AEDM use.

(A) If DOE has determined that a manufacturer made invalid ratings on two or more models rated using the same AEDM within a 24 month period, the manufacturer must take the action listed in the table corresponding to the number of invalid certified ratings. The twenty-four month period begins with a DOE determination that a rating is invalid through the process outlined above. Additional invalid ratings apply for the purposes of determining the appropriate consequences if the subsequent determination(s) is based on selection of a unit for testing within the twenty-four month period (i.e., subsequent determinations need not be made within 24 months).

Number of invalid certified ratings from the same AEDM 2 within a rolling 24 month period 3 Required manufacturer actions
2 Submit different test data and reports from testing to validate that AEDM within the validation classes to which it is applied. 1 Adjust the ratings as appropriate.
4 Conduct double the minimum number of validation tests for the validation classes to which the AEDM is applied. Note, the tests required under this paragraph (c)(5)(viii) must be performed on different models than the original tests required under paragraph (c)(2) of this section.
6 Conduct the minimum number of validation tests for the validation classes to which the AEDM is applied at a third-part test facility; And
Conduct addition testing, which is equal to 1/2 the minimum number of validation tests for the validation classes to which the AEDM is applied , at either the manufacturer's facility or a third-party test facility, at the manufacturer's discretion.
Note, the tests required under this paragraph (c)(5)(viii) must be performed on different models than the original tests performed under paragraph (c)(2) of this section.
> = 8 Manufacturer has lost privilege to use AEDM. All ratings for models within the validation classes to which the AEDM applied should be rated via testing. Distribution cannot continue until certification(s) are corrected to reflect actual test data.

1 A manufacturer may discuss with DOE's Office of Enforcement whether existing test data on different basic models within the validation classes to which that specific AEDM was applied may be used to meet this requirement.

2 The “same AEDM” means a computer simulation or mathematical model that is identified by the manufacturer at the time of certification as having been used to rate a model or group of models.

3 The twenty-four month period begins with a DOE determination that a rating is invalid through the process outlined above. Additional invalid ratings apply for the purposes of determining the appropriate consequences if the subsequent determination(s) is based on testing of a unit that was selected for testing within the twenty-four month period (i.e., subsequent determinations need not be made within 24 months).

(B) If, as a result of eight or more invalid ratings, a manufacturer has lost the privilege of using an AEDM for rating, the manufacturer may regain the ability to use an AEDM by:

(1) Investigating and identifying cause(s) for failures;

(2) Taking corrective action to address cause(s);

(3) Performing six new tests per validation class, a minimum of two of which must be performed by an independent, third-party laboratory to validate the AEDM; and

(4) Obtaining DOE authorization to resume use of the AEDM.

(d) Alternative efficiency determination method for distribution transformers - A manufacturer may use an AEDM to determine the efficiency of one or more of its untested basic models only if it determines the efficiency of at least five of its other basic models (selected in accordance with paragraph (d)(3) of this section) through actual testing.

(1) Criteria an AEDM must satisfy.

(i) The AEDM has been derived from a mathematical model that represents the electrical characteristics of that basic model;

(ii) The AEDM is based on engineering and statistical analysis, computer simulation or modeling, or other analytic evaluation of performance data; and

(iii) The manufacturer has substantiated the AEDM, in accordance with paragraph (d)(2) of this section, by applying it to, and testing, at least five other basic models of the same type, i.e., low-voltage dry-type distribution transformers, medium-voltage dry-type distribution transformers, or liquid-immersed distribution transformers.

(2) Substantiation of an AEDM. Before using an AEDM, the manufacturer must substantiate the AEDM's accuracy and reliability as follows:

(i) Apply the AEDM to at least five of the manufacturer's basic models that have been selected for testing in accordance with paragraph (d)(3) of this section, and calculate the power loss for each of these basic models;

(ii) Test at least five units of each of these basic models in accordance with the applicable test procedure and § 429.47, and determine the power loss for each of these basic models;

(iii) The predicted total power loss for each of these basic models, calculated by applying the AEDM pursuant to paragraph (d)(2)(i) of this section, must be within plus or minus five percent of the mean total power loss determined from the testing of that basic model pursuant to paragraph (d)(2)(ii) of this section; and

(iv) Calculate for each of these basic models the percentage that its power loss calculated pursuant to paragraph (d)(2)(i) of this section is of its power loss determined from testing pursuant to paragraph (d)(2)(ii) of this section, compute the average of these percentages, and that calculated average power loss, expressed as a percentage of the average power loss determined from testing, must be no less than 97 percent and no greater than 103 percent.

(3) Additional testing requirements.

(i) A manufacturer must select basic models for testing in accordance with the following criteria:

(A) Two of the basic models must be among the five basic models with the highest unit volumes of production by the manufacturer in the prior year, or during the prior 12-calendar-month period beginning in 2003, 1 whichever is later;

1 When identifying these five basic models, any basic model that does not comply with Federal energy conservation standards for distribution transformers that may be in effect shall be excluded from consideration.

(B) No two basic models should have the same combination of power and voltage ratings; and

(C) At least one basic model should be single-phase and at least one should be three-phase.

(ii) In any instance where it is impossible for a manufacturer to select basic models for testing in accordance with all of these criteria, the criteria shall be given priority in the order in which they are listed. Within the limits imposed by the criteria, basic models shall be selected randomly.

(4) Subsequent verification of an AEDM.

(i) Each manufacturer that has used an AEDM under this section shall have available for inspection by the Department of Energy records showing:

(A) The method or methods used;

(B) The mathematical model, the engineering or statistical analysis, computer simulation or modeling, and other analytic evaluation of performance data on which the AEDM is based;

(C) Complete test data, product information, and related information that the manufacturer has generated or acquired pursuant to paragraph (d)(4) of this section; and

(D) The calculations used to determine the efficiency and total power losses of each basic model to which the AEDM was applied.

(ii) If requested by the Department, the manufacturer must perform at least one of the following:

(A) Conduct simulations to predict the performance of particular basic models of distribution transformers specified by the Department;

(B) Provide analyses of previous simulations conducted by the manufacturer;

(C) Conduct sample testing of basic models selected by the Department; or

(D) Conduct a combination of these.

(e) Alternate Efficiency Determination Method (AEDM) for central air conditioners and heat pumps. This paragraph (e) sets forth the requirements for a manufacturer to use an AEDM to rate central air conditioners and heat pumps.

(1) Criteria an AEDM must satisfy. A manufacturer may not apply an AEDM to an individual model/combination to determine its represented values (SEER, EER, HSPF, and/or PW,OFF) pursuant to this section unless authorized pursuant to § 429.16(d) and:

(i) The AEDM is derived from a mathematical model that estimates the energy efficiency or energy consumption characteristics of the individual model or combination (SEER, EER, HSPF, and/or PW,OFF) as measured by the applicable DOE test procedure; and

(ii) The manufacturer has validated the AEDM in accordance with paragraph (e)(2) of this section.

(2) Validation of an AEDM. Before using an AEDM, the manufacturer must validate the AEDM's accuracy and reliability as follows:

(i) The manufacturer must complete testing of each basic model as required under § 429.16(b)(2). Using the AEDM, calculate the energy use or efficiency for each of the tested individual models/combinations within each basic model. Compare the represented value based on testing and the AEDM energy use or efficiency output according to paragraph (e)(2)(ii) of this section. The manufacturer is responsible for ensuring the accuracy and reliability of the AEDM.

(ii) Individual model/combination tolerances. This paragraph (e)(2)(ii) provides the tolerances applicable to individual models/combinations rated using an AEDM.

(A) The predicted represented values for each individual model/combination calculated by applying the AEDM may not be more than four percent greater (for measures of efficiency) or less (for measures of consumption) than the values determined from the corresponding test of the individual model/combination.

(B) The predicted energy efficiency or consumption for each individual model/combination calculated by applying the AEDM must meet or exceed the applicable federal energy conservation standard.

(iii) Additional test unit requirements.

(A) Each AEDM must be supported by test data obtained from physical tests of current individual models/combinations; and

(B) Test results used to validate the AEDM must meet or exceed current, applicable Federal standards as specified in part 430 of this chapter; and

(C) Each test must have been performed in accordance with the applicable DOE test procedure with which compliance is required at the time the individual models/combinations used for validation are distributed in commerce.

(3) AEDM records retention requirements. If a manufacturer has used an AEDM to determine representative values pursuant to this section, the manufacturer must have available upon request for inspection by the Department records showing:

(i) The AEDM, including the mathematical model, the engineering or statistical analysis, and/or computer simulation or modeling that is the basis of the AEDM;

(ii) Product information, complete test data, AEDM calculations, and the statistical comparisons from the units tested that were used to validate the AEDM pursuant to paragraph (e)(2) of this section; and

(iii) Product information and AEDM calculations for each individual model/combination to which the AEDM has been applied.

(4) Additional AEDM requirements. If requested by the Department, the manufacturer must:

(i) Conduct simulations before representatives of the Department to predict the performance of particular individual models/combinations;

(ii) Provide analyses of previous simulations conducted by the manufacturer; and/or

(iii) Conduct certification testing of individual models or combinations selected by the Department.

(5) AEDM verification testing. DOE may use the test data for a given individual model/combination generated pursuant to § 429.104 to verify the represented value determined by an AEDM as long as the following process is followed:

(i) Selection of units. DOE will obtain one or more units for test from retail, if available. If units cannot be obtained from retail, DOE will request that a unit be provided by the manufacturer;

(ii) Lab requirements. DOE will conduct testing at an independent, third-party testing facility of its choosing. In cases where no third-party laboratory is capable of testing the equipment, testing may be conducted at a manufacturer's facility upon DOE's request.

(iii) Testing. At no time during verification testing may the lab and the manufacturer communicate without DOE authorization. If during test set-up or testing, the lab indicates to DOE that it needs additional information regarding a given individual model or combination in order to test in accordance with the applicable DOE test procedure, DOE may organize a meeting between DOE, the manufacturer and the lab to provide such information.

(iv) Failure to meet certified represented value. If an individual model/combination tests worse than its certified represented value (i.e., lower than the certified efficiency value or higher than the certified consumption value) by more than 5 percent, or the test results in a different cooling capacity than its certified cooling capacity by more than 5 percent, DOE will notify the manufacturer. DOE will provide the manufacturer with all documentation related to the test set up, test conditions, and test results for the unit. Within the timeframe allotted by DOE, the manufacturer:

(A) May present any and all claims regarding testing validity; and

(B) If not on site for the initial test set-up, must test at least one additional unit of the same individual model or combination obtained from a retail source at its own expense, following the test requirements in § 429.110(a)(3). When testing at an independent lab, the manufacturer may choose to have DOE and the manufacturer present.

(v) Tolerances. This paragraph specifies the tolerances DOE will permit when conducting verification testing.

(A) For consumption metrics, the result from a DOE verification test must be less than or equal to 1.05 multiplied by the certified represented value.

(B) For efficiency metrics, the result from a DOE verification test must be greater than or equal to 0.95 multiplied by the certified represented value.

(vi) Invalid represented value. If, following discussions with the manufacturer and a retest where applicable, DOE determines that the verification testing was conducted appropriately in accordance with the DOE test procedure, DOE will issue a determination that the represented values for the basic model are invalid. The manufacturer must conduct additional testing and re-rate and re-certify the individual models/combinations within the basic model that were rated using the AEDM based on all test data collected, including DOE's test data.

(vii) AEDM use. This paragraph (e)(5)(vii) specifies when a manufacturer's use of an AEDM may be restricted due to prior invalid represented values.

(A) If DOE has determined that a manufacturer made invalid represented values on individual models/combinations within two or more basic models rated using the manufacturer's AEDM within a 24 month period, the manufacturer must test the least efficient and most efficient individual model/combination within each basic model in addition to the individual model/combination specified in § 429.16(b)(2). The twenty-four month period begins with a DOE determination that a represented value is invalid through the process outlined above.

(B) If DOE has determined that a manufacturer made invalid represented values on more than four basic models rated using the manufacturer's AEDM within a 24-month period, the manufacturer may no longer use an AEDM.

(C) If a manufacturer has lost the privilege of using an AEDM, the manufacturer may regain the ability to use an AEDM by:

(1) Investigating and identifying cause(s) for failures;

(2) Taking corrective action to address cause(s);

(3) Performing six new tests per basic model, a minimum of two of which must be performed by an independent, third-party laboratory from units obtained from retail to validate the AEDM; and

(4) Obtaining DOE authorization to resume use of an AEDM.

(f) Alternative efficiency determination method (AEDM) for walk-in refrigeration equipment -

(1) Criteria an AEDM must satisfy. A manufacturer may not apply an AEDM to a basic model to determine its efficiency pursuant to this section unless:

(i) The AEDM is derived from a mathematical model that estimates the energy efficiency or energy consumption characteristics of the basic model as measured by the applicable DOE test procedure;

(ii) The AEDM is based on engineering or statistical analysis, computer simulation or modeling, or other analytical evaluation of performance data; and

(iii) The manufacturer has validated the AEDM, in accordance with paragraph (f)(2) of this section.

(2) Validation of an AEDM. Before using an AEDM, the manufacturer must validate the AEDM's accuracy and reliability as follows:

(i) The manufacturer must select at least the minimum number of basic models for each validation class specified in paragraph (f)(2)(iv) of this section to which the particular AEDM applies. Test a single unit of each basic model in accordance with paragraph (f)(2)(iii) of this section. Using the AEDM, calculate the energy use or energy efficiency for each of the selected basic models. Compare the results from the single unit test and the AEDM output according to paragraph (f)(2)(ii) of this section. The manufacturer is responsible for ensuring the accuracy and repeatability of the AEDM.

(ii) Individual model tolerances.

(A) The predicted efficiency for each model calculated by applying the AEDM may not be more than five percent greater than the efficiency determined from the corresponding test of the model.

(B) The predicted energy efficiency for each model calculated by applying the AEDM must meet or exceed the applicable federal energy conservation standard.

(iii) Additional test unit requirements.

(A) Each AEDM must be supported by test data obtained from physical tests of current models; and

(B) Test results used to validate the AEDM must meet or exceed current, applicable Federal standards as specified in part 431 of this chapter;

(C) Each test must have been performed in accordance with the applicable DOE test procedure with which compliance is required at the time the basic model is distributed in commerce; and

(D) For rating WICF refrigeration system components, an AEDM may not simulate or model portions of the system that are not required to be tested by the DOE test procedure. That is, if the test results used to validate the AEDM are for either a unit cooler only or a condensing unit only, the AEDM must estimate the system rating using the nominal values specified in the DOE test procedure for the other part of the refrigeration system.

(iv) WICF refrigeration validation classes.

Validation class Minimum number of distinct models that must be tested
Dedicated Condensing, Medium Temperature, Indoor System 2 Basic Models.
Dedicated Condensing, Medium Temperature, Outdoor System 1 2 Basic Models.
Dedicated Condensing, Low Temperature, Indoor System 2 Basic Models.
Dedicated Condensing, Low Temperature, Outdoor System 2 2 Basic Models.
Unit Cooler connected to a Multiplex Condensing Unit, Medium Temperature 2 Basic Models.
Unit Cooler connected to a Multiplex Condensing Unit, Low Temperature 2 Basic Models.
Medium Temperature, Indoor Condensing Unit 2 Basic Models.
Medium Temperature, Outdoor Condensing Unit 3 2 Basic Models.
Low Temperature, Indoor Condensing Unit 2 Basic Models.
Low Temperature, Outdoor Condensing Unit 4 2 Basic Models.

1 AEDMs validated for dedicated condensing, medium temperature, outdoor systems may be used to determine representative values for dedicated condensing, medium temperature, indoor systems, and additional validation testing is not required. AEDMs validated for only dedicated condensing, medium temperature, indoor systems may not be used to determine representative values for dedicated condensing, medium temperature, outdoor systems.

2 AEDMs validated for dedicated condensing, low temperature, outdoor systems may be used to determine representative values for dedicated condensing, low temperature, indoor systems, and additional validation testing is not required. AEDMs validated for only dedicated condensing, low temperature, indoor systems may not be used to determine representative values for dedicated condensing, low temperature, outdoor systems.

3 AEDMs validated for medium temperature, outdoor condensing units may be used to determine representative values for medium temperature, indoor condensing units, and additional validation testing is not required. AEDMs validated for only medium temperature, indoor condensing units may not be used to determine representative values for medium temperature, outdoor condensing units.

4 AEDMs validated for low temperature, outdoor condensing units may be used to determine representative values for low temperature, indoor condensing units, and additional validation testing is not required. AEDMs validated for only low temperature, indoor condensing units may not be used to determine representative values for low temperature, outdoor condensing units.

(3) AEDM records retention requirements. If a manufacturer has used an AEDM to determine representative values pursuant to this section, the manufacturer must have available upon request for inspection by the Department records showing:

(i) The AEDM, including the mathematical model, the engineering or statistical analysis, and/or computer simulation or modeling that is the basis of the AEDM;

(ii) Equipment information, complete test data, AEDM calculations, and the statistical comparisons from the units tested that were used to validate the AEDM pursuant to paragraph (f)(2) of this section; and

(iii) Equipment information and AEDM calculations for each basic model to which the AEDM has been applied.

(4) Additional AEDM requirements. If requested by the Department the manufacturer must perform at least one of the following:

(i) Conduct simulations before representatives of the Department to predict the performance of particular basic models of the product to which the AEDM was applied;

(ii) Provide analyses of previous simulations conducted by the manufacturer; or

(iii) Conduct certification testing of basic models selected by the Department.

(5) AEDM verification testing. DOE may use the test data for a given individual model generated pursuant to § 429.104 to verify the certified rating determined by an AEDM as long as the following process is followed:

(i) Selection of units. DOE will obtain units for test from retail, where available. If units cannot be obtained from retail, DOE will request that a unit be provided by the manufacturer.

(ii) Lab requirements. DOE will conduct testing at an independent, third-party testing facility of its choosing. In cases where no third-party laboratory is capable of testing the equipment, it may be tested at a manufacturer's facility upon DOE's request.

(iii) Manufacturer participation. Testing will be performed without manufacturer representatives on-site.

(iv) Testing. All verification testing will be conducted in accordance with the applicable DOE test procedure, as well as each of the following to the extent that they apply:

(A) Any active test procedure waivers that have been granted for the basic model;

(B) Any test procedure guidance that has been issued by DOE;

(C) If during test set-up or testing, the lab indicates to DOE that it needs additional information regarding a given basic model in order to test in accordance with the applicable DOE test procedure, DOE may organize a meeting between DOE, the manufacturer and the lab to provide such information.

(D) At no time during the process may the lab communicate directly with the manufacturer without DOE present.

(v) Failure to meet certified rating. If a model tests worse than its certified rating by an amount exceeding the tolerance prescribed in paragraph (f)(5)(vi) of this section, DOE will notify the manufacturer. DOE will provide the manufacturer with all documentation related to the test set up, test conditions, and test results for the unit. Within the timeframe allotted by DOE, the manufacturer may then present all claims regarding testing validity.

(vi) Tolerances. for efficiency metrics, the result from a DOE verification test must be greater than or equal to the certified rating × (1 − the applicable tolerance).

Equipment Metric Applicable
tolerance
Refrigeration systems (including components) AWEF 5%

(vii) Invalid rating. If, following discussions with the manufacturer and a retest where applicable, DOE determines that the testing was conducted appropriately in accordance with the DOE test procedure, the rating for the model will be considered invalid. Pursuant to 10 CFR 429.13(b), DOE may require a manufacturer to conduct additional testing as a remedial measure.

(g) Alternative determination of ratings for untested basic models of residential water heaters and residential-duty commercial water heaters. For models of water heaters that differ only in fuel type or power input, ratings for untested basic models may be established in accordance with the following procedures in lieu of testing. This method allows only for the use of ratings identical to those of a tested basic model as provided below; simulations or other modeling predictions for ratings of the uniform energy factor, volume, first-hour rating, or maximum gallons per minute (GPM) are not permitted.

(1) Gas Water Heaters. For untested basic models of gas-fired water heaters that differ from tested basic models only in whether the basic models use natural gas or propane gas, the represented value of uniform energy factor, first-hour rating, and maximum gallons per minute for an untested basic model is the same as that for a tested basic model, as long as the input ratings of the tested and untested basic models are within ±10%, that is:

(2) Electric Storage Water Heaters. Rate an untested basic model of an electric storage type water heater using the first-hour rating and the uniform energy factor obtained from a tested basic model as a basis for ratings of basic models with other input ratings, provided that certain conditions are met:

(i) For an untested basic model, the represented value of the first-hour rating and the uniform energy factor is the same as that of a tested basic model, provided that each heating element of the untested basic model is rated at or above the input rating for the corresponding heating element of the tested basic model.

(ii) For an untested basic model having any heating element with an input rating that is lower than that of the corresponding heating element in the tested basic model, the represented value of the first-hour rating and the uniform energy factor is the same as that of a tested basic model, provided that the first-hour rating for the untested basic model results in the same draw pattern specified in Table I of appendix E for the simulated-use test as was applied to the tested basic model. To establish whether this condition is met, determine the first-hour ratings for the tested and the untested basic models in accordance with the procedure described in section 5.3.3 of 10 CFR part 430, subpart B, appendix E, then compare the appropriate draw pattern specified in Table I of appendix E for the first-hour rating of the tested basic model with that for the untested basic model. If this condition is not met, then the untested basic model must be tested and the appropriate sampling provisions applied to determine its uniform energy factor in accordance with appendix E and this part.

[76 FR 12451, Mar. 7, 2011; 76 FR 24780, May 2, 2011, as amended at 78 FR 79595, Dec. 31, 2013; 79 FR 25505, May 5, 2014; 79 FR 27410, May 13, 2014; 80 FR 152, Jan. 5, 2015; 79 FR 40565, July 11, 2014; 81 FR 4145, Jan. 25, 2016; 81 FR 37054, June 8, 2016]

Title 10 published on 2015-01-01

The following are ALL rules, proposed rules, and notices (chronologically) published in the Federal Register relating to 10 CFR Part 429 after this date.

  • 2015-11-27; vol. 80 # 228 - Friday, November 27, 2015
    1. 80 FR 74020 - Energy Conservation Program: Test Procedures for Portable Air Conditioners
      GPO FDSys XML | Text
      DEPARTMENT OF ENERGY, 10 CFR Parts 429 and 430
      Supplemental notice of proposed rulemaking.
      DOE will accept comments, data, and information regarding this SNOPR, submitted no later than December 28, 2015. See section V, “Public Participation,” for details.
      10 CFR Part 429