21 CFR § 870.5200 - External cardiac compressor.

§ 870.5200 External cardiac compressor.

(a)Identification. An external cardiac compressor is an externally applied prescription device that is electrically, pneumatically, or manually powered and is used to compress the chest periodically in the region of the heart to provide blood flow during cardiac arrest. External cardiac compressor devices are used as an adjunct to manual cardiopulmonary resuscitation (CPR) when effective manual CPR is not possible (e.g., during patient transport or extended CPR when fatigue may prohibit the delivery of effective/consistent compressions to the victim, or when insufficient EMS personnel are available to provide effective CPR).

(b)Classification. Class II (special controls). The special controls for this device are:

(1) Nonclinical performance testing under simulated physiological conditions must demonstrate the reliability of the delivery of specific compression depth and rate over the intended duration of use.

(2) Labeling must include the following:

(i) The clinical training necessary for the safe use of this device;

(ii) Adjunctive use only indication prominently displayed on labels physically placed on the device and in any device manuals or other labeling;

(iii) Information on the patient population for which the device has been demonstrated to be effective (including patient size and/or age limitations, e.g., adult, pediatric and/or infant); and

(iv) Information on the time necessary to deploy the device as demonstrated in the performance testing.

(3) For devices that incorporate electrical components, appropriate analysis and testing must demonstrate that the device is electrically safe and electromagnetically compatible in its intended use environment.

(4) Human factors testing and analysis must validate that the device design and labeling are sufficient for effective use by the intended user, including an evaluation for the time necessary to deploy the device.

(5) For devices containing software, software verification, validation, and hazard analysis must be performed.

(6) Components of the device that come into human contact must be demonstrated to be biocompatible.

[81 FR 33133, May 25, 2016]