40 CFR § 63.8234 - What equations and procedures must I use for the initial compliance demonstration?
(a) By-product hydrogen streams and end box ventilation system vents. You must determine the total grams of mercury per Megagram of chlorine production (g Hg/Mg Cl2) of chlorine produced from all by-product hydrogen streams and all end box ventilation system vents, if applicable, at a mercury cell chlor-alkali production facility, and you must follow the procedures in paragraphs (a)(1) through (6) of this section.
(1) Determine the mercury emission rate for each test run in grams per day for each by-product hydrogen stream and for each end box ventilation system vent, if applicable, from Method 101, 101A, or 102 (40 CFR part 61, appendix A).
(2) Calculate the average measured electric current through the operating mercury cells during each test run for each by-product hydrogen stream and for each end box ventilation system vent, if applicable, using Equation 1 of this section as follows:
(3) Calculate the amount of chlorine produced during each test run for each by-product hydrogen stream and for each end box ventilation system vent, if applicable, using Equation 2 of this section as follows:
(4) Calculate the mercury emission rate in grams of mercury per megagram of chlorine produced for each test run for each by-product hydrogen stream and for each end box ventilation system vent, if applicable, using Equation 3 of this section as follows:
(5) Calculate the average mercury emission rate for each by-product hydrogen stream and for each end box ventilation system vent, if applicable, using Equation 4 of this section as follows:
(6) Calculate the total mercury emission rate from all by-product hydrogen streams and all end box ventilation system vents, if applicable, at the mercury cell chlor-alkali production facility using Equation 5 of this section as follows:
(b) Mercury thermal recovery vents. You must determine the milligrams of mercury per dscm exhaust discharged from mercury thermal recovery unit vents, using the procedures in paragraphs (b)(1) and (2) of this section.
(1) Calculate the concentration of mercury in milligrams of mercury per dscm of exhaust for each test run for each mercury thermal recovery unit vent using Equation 6 of this section as follows:
(2) Calculate the average concentration of mercury in each mercury thermal recovery unit vent exhaust using Equation 7 of this section as follows: