Calculations.

Calculations.
(1) Record the PM concentration for each test sampler for each test period as Ci,j, where i is the sampler number (i = 1,2,3) and j is the test period (j = 1,2, * * * 10).
(2)
(i) For each test period, calculate and record the average of the three measured PM concentrations as Cave,j where j is the test period using equation 26 of this section:
(ii) If Cave,j <3 µg/m 3 for any test period, data from that test period are unacceptable, and an additional sample collection set must be obtained to replace the unacceptable data.
(3)
(i) Calculate and record the precision for each of the 10 test periods, as the standard deviation, using equation 27 of this section:
(ii) For each of the 10 test periods, also calculate and record the precision as the relative standard deviation, in percent, using equation 28 of this section:
(1) Record the PM concentration for each test sampler for each test period as Ci,j, where i is the sampler number (i = 1,2,3) and j is the test period (j = 1,2, * * * 10).
(2)
(i) For each test period, calculate and record the average of the three measured PM concentrations as Cave,j where j is the test period using equation 26 of this section:
(ii) If Cave,j <3 µg/m 3 for any test period, data from that test period are unacceptable, and an additional sample collection set must be obtained to replace the unacceptable data.
(3)
(i) Calculate and record the precision for each of the 10 test periods, as the standard deviation, using equation 27 of this section:
(ii) For each of the 10 test periods, also calculate and record the precision as the relative standard deviation, in percent, using equation 28 of this section:
(h) Test results.
(1) The candidate method passes the precision test if either Pj or RPj is less than or equal to the corresponding specification in table E–1 of this subpart for all 10 test periods.
(2) The candidate sequential sampler passes the blank filter storage deposition test if the average net storage deposition weight gain of each set of blank filters (total of the net weight gain of each blank filter divided by the number of filters in the set) from each test sampler (six sets in all) is less than 50 µg.

Source

40 CFR § 53.58


Scoping language

Overview. This test is intended to determine the operational precision of the candidate sampler during a minimum of 10 days of field operation, using three collocated test samplers. Measurements of PM are made at a test site with all of the samplers and then compared to determine replicate precision. Candidate sequential samplers are also subject to a test for possible deposition of particulate matter on inactive filters during a period of storage in the sampler. This procedure is applicable to both reference and equivalent methods. In the case of equivalent methods, this test may be combined and conducted concurrently with the comparability test for equivalent methods (described in subpart C of this part), using three reference method samplers collocated with three candidate equivalent method samplers and meeting the applicable site and other requirements of subpart C of this part.

Is this correct? or