Plasma Arc Machining

Plasma Arc Machining involves removing material or shaping a part by a high-velocity jet of high-temperature, ionized gas. A gas (nitrogen, argon, or hydrogen) is passed through an electric arc, causing the gas to become ionized, and heated to temperatures exceeding 16,650 C (30,000 F). The relatively narrow plasma jet melts and displaces the material in its path. Because plasma arc machining does not depend on a chemical reaction between the gas and the part, and because plasma temperatures are extremely high, the process can be used on almost any metal, including those that are resistant to oxygen-fuel gas cutting. The method is used mainly for profile cutting of stainless steel and aluminum alloys. Although plasma arc machining typically is a dry process, water is used for water injection plasma arc torches. In these cases, a constricted swirling flow of water surrounds the cutting arc. This operations also may be performed immersed in a water bath. In both cases, water is used to stabilize the arc, to cool the part, and to contain smoke and fumes.

Source

40 CFR § C_to_part_438


Scoping language

None
Is this correct? or