Eye protection.

Eye protection. Eye protection meeting the requirements of 1910.133 (a)(2) thru (a)(6) shall be provided and the employer shall ensure its use by employees where foreign objects may enter the eyes due to work operations such as but not limited to:
(i) Drilling or chipping stone, brick or masonry, breaking concrete or pavement, etc. by hand tools (sledgehammer, etc.) or power tools such as pneumatic drills or hammers;
(ii) Working on or around high speed emery or other grinding wheels unprotected by guards;
(iii) Cutting or chipping terra cotta ducts, tile, etc.;
(iv) Working under motor vehicles requiring hammering;
(v) Cleaning operations using compressed air, steam, or sand blast;
(vi) Acetylene welding or similar operations where sparks are thrown off;
(vii) Using powder actuated stud drivers;
(viii) Tree pruning or cutting underbrush;
(ix) Handling battery cells and solutions, such as taking battery readings with a hydrometer and thermometer;
(x) Removing or rearranging strand or open wire; and
(xi) Performing lead sleeve wiping and while soldering.
(3) Tent heaters. Flame-type heaters may not be used within ground tents or on platforms within aerial tents unless:
(i) The tent covers are constructed of fire resistant materials, and
(ii) Adequate ventilation is provided to maintain safe oxygen levels and avoid harmful buildup of combustion products and combustible gases.
(4) Torches. Torches may be used on aerial splicing platforms or in buckets enclosed by tents provided the tent material is constructed of fire resistant material and the torch is turned off when not in actual use. Aerial tents shall be adequately ventilated while the torch is in operation.
(5) Portable power equipment. Nominal 120V, or less, portable generators used for providing power at work locations do not require grounding if the output circuit is completely isolated from the frame of the unit.
(6) Vehicle-mounted utility generators. Vehicle-mounted utility generators used for providing nominal 240V AC or less for powering portable tools and equipment need not be grounded to earth if all of the following conditions are met:
(i) One side of the voltage source is solidly strapped to the metallic structure of the vehicle;
(ii) Grounding-type outlets are used, with a “grounding” conductor between the outlet grounding terminal and the side of the voltage source that is strapped to the vehicle;
(iii) All metallic encased tools and equipment that are powered from this system are equipped with three-wire cords and grounding-type attachment plugs, except as designated in paragraph (i)(7) of this section.
(7) Portable lights, tools, and appliances. Portable lights, tools, and appliances having noncurrent-carrying external metal housing may be used with power equipment described in paragraph (i)(5) of this section without an equipment grounding conductor. When operated from commercial power such metal parts of these devices shall be grounded, unless these tools or appliances are protected by a system of double insulation, or its equivalent. Where such a system is employed, the equipment shall be distinctively marked to indicate double insulation.
(8) Soldering devices. Grounding shall be omitted when using soldering irons, guns or wire-wrap tools on telecommunications circuits.
(9) Lead work. The wiping of lead joints using melted solder, gas fueled torches, soldering irons or other appropriate heating devices, and the soldering of wires or other electrical connections do not constitute the welding, cutting and brazing described in subpart Q of this part. When operated from commercial power the metal housing of electric solder pots shall be grounded. Electric solder pots may be used with the power equipment described in paragraph (i)(5) of this section without a grounding conductor. The employer shall ensure that wiping gloves or cloths and eye protection are used in lead wiping operations. A drip pan to catch hot lead drippings shall also be provided and used.
(j) Vehicle-mounted material handling devices and other mechanical equipment—(1) General.
(i) The employer shall ensure that visual inspections are made of the equipment by a competent person each day the equipment is to be used to ascertain that it is in good condition.
(ii) The employer shall ensure that tests shall be made at the beginning of each shift by a competent person to insure the vehicle brakes and operating systems are in proper working condition.
(2) Scrapers, loaders, dozers, graders and tractors.
(i) All rubber-tired, self-propelled scrapers, rubber-tired front end loaders, rubber-tired dozers, agricultural and industrial tractors, crawler tractors, crawler-type loaders, and motor graders, with or without attachments, that are used in telecommunications work shall have rollover protective structures that meet the requirements of subpart W of part 1926 of this Title.
(ii) Eye protection shall be provided and the employer shall ensure that it is used by employees when working in areas where flying material is generated.
(3) Vehicle-mounted elevating and rotating work platforms. These devices shall not be operated with any conductive part of the equipment closer to exposed energized power lines than the clearances set forth in Table R–2 of this section.
(4) Derrick trucks and similar equipment.
(i) This equipment shall not be operated with any conductive part of the equipment closer to exposed energized power lines than the clearances set forth in Table R–2 of this section.
(ii) When derricks are used to handle poles near energized power conductors, these operations shall comply with the requirements contained in paragraphs (b)(7) and (n)(11) of this section.
(iii) Moving parts of equipment and machinery carried on or mounted on telecommunications line trucks shall be guarded. This may be done with barricades as specified in paragraph (d)(2) of this section.
(iv) Derricks and the operation of derricks shall comply with the following requirements: (A) Manufacturer's specifications, load ratings and instructions for derrick operation shall be strictly observed.
(B) Rated load capacities and instructions related to derrick operation shall be conspicuously posted on a permanent weather-resistant plate or decal in a location on the derrick that is plainly visible to the derrick operator.
(C) Prior to derrick operation the parking brake must be set and the stabilizers extended if the vehicle is so equipped. When the vehicle is situated on a grade, at least two wheels must be chocked on the downgrade side.
(D) Only persons trained in the operation of the derrick shall be permitted to operate the derrick.
(E) Hand signals to derrick operators shall be those prescribed by ANSI B30.6–1969, “Safety Code for Derricks”, which is incorporated by reference as specified in § 1910.6.
(F) The employer shall ensure that the derrick and its associated equipment are inspected by a competent person at intervals set by the manufacturer but in no case less than once per year. Records shall be maintained including the dates of inspections, and necessary repairs made, if corrective action was required.
(G) Modifications or additions to the derrick and its associated equipment that alter its capacity or affect its safe operation shall be made only with written certification from the manufacturer, or other equivalent entity, such as a nationally recognized testing laboratory, that the modification results in the equipment being safe for its intended use. Such changes shall require the changing and posting of revised capacity and instruction decals or plates. These new ratings or limitations shall be as provided by the manufacturer or other equivalent entity.
(H) Wire rope used with derricks shall be of improved plow steel or equivalent. Wire rope safety factors shall be in accordance with American National Standards Institute B30.6–1969.
(I) Wire rope shall be taken out of service, or the defective portion removed, when any of the following conditions exist: (1) The rope strength has been significantly reduced due to corrosion, pitting, or excessive heat, or
(2) The thickness of the outer wires of the rope has been reduced to two-thirds or less of the original thickness, or
(3) There are more than six broken wires in any one rope lay, or
(4) There is excessive permanent distortion caused by kinking, crushing, or severe twisting of the rope.
(k) Materials handling and storage—(1) Poles. When working with poles in piles or stacks, work shall be performed from the ends of the poles as much as possible, and precautions shall be taken for the safety of employees at the other end of the pole. During pole hauling operations, all loads shall be secured to prevent displacement. Lights, reflectors and/or flags shall be displayed on the end and sides of the load as necessary. The requirements for installation, removal, or other handling of poles in pole lines are prescribed in paragraph (n) of this section which pertains to overhead lines. In the case of hoisting machinery equipped with a positive stop loadholding device, it shall be permissible for the operator to leave his position at the controls (while a load is suspended) for the sole purpose of assisting in positioning the load prior to landing it. Prior to unloading steel, poles, crossarms, and similar material, the load shall be thoroughly examined to ascertain that the load has not shifted, that binders or stakes have not broken, and that the load is not otherwise hazardous to employees.
(2) Cable reels. Cable reels in storage shall be checked or otherwise restrained when there is a possibility that they might accidentally roll from position.
(l) Cable fault locating and testing.
(1) Employees involved in using high voltages to locate trouble or test cables shall be instructed in the precautions necessary for their own safety and the safety of other employees.
(2) Before the voltage is applied, cable conductors shall be isolated to the extent practicable. Employees shall be warned, by such techniques as briefing and tagging at all affected locations, to stay clear while the voltage is applied.
(m) Grounding for employee protection—pole lines—(1) Power conductors. Electric power conductors and equipment shall be considered as energized unless the employee can visually determine that they are bonded to one of the grounds listed in paragraph (m)(4) of this section.
(2) Nonworking open wire. Nonworking open wire communications lines shall be bonded to one of the grounds listed in paragraph (m)(4) of this section.
(3) Vertical power conduit, power ground wires and street light fixtures.
(i) Metal power conduit on joint use poles, exposed vertical power ground wires, and street light fixtures which are below communications attachments or less than 20 inches above these attachments, shall be considered energized and shall be tested for voltage unless the employee can visually determine that they are bonded to the communications suspension strand or cable sheath.
(ii) If no hazardous voltage is shown by the voltage test, a temporary bond shall be placed between such street light fixture, exposed vertical power grounding conductor, or metallic power conduit and the communications cable strand. Temporary bonds used for this purpose shall have sufficient conductivity to carry at least 500 amperes for a period of one second without fusing.
(4) Suitable protective grounding. Acceptable grounds for protective grounding are as follows:
(i) A vertical ground wire which has been tested, found safe, and is connected to a power system multigrounded neutral or the grounded neutral of a power secondary system where there are at least three services connected;
(ii) Communications cable sheath or shield and its supporting strand where the sheath or shield is:
(A) Bonded to an underground or buried cable which is connected to a central office ground, or
(B) Bonded to an underground metallic piping system, or
(C) Bonded to a power system multigrounded neutral or grounded neutral of a power secondary system which has at least three services connected;
(iii) Guys which are bonded to the grounds specified in paragraphs (m)(4) (i) and (ii) of this section and which have continuity uninterrupted by an insulator; and
(iv) If all of the preceding grounds are not available, arrays of driven ground rods where the resultant resistance to ground will be low enough to eliminate danger to personnel or permit prompt operation of protective devices.
(5) Attaching and removing temporary bonds. When attaching grounds (bonds), the first attachment shall be made to the protective ground. When removing bonds, the connection to the line or equipment shall be removed first. Insulating gloves shall be worn during these operations.
(6) Temporary grounding of suspension strand.
(i) The suspension strand shall be grounded to the existing grounds listed in paragraph (m)(4) of this section when being placed on jointly used poles or during thunderstorm activity.
(ii) Where power crossings are encountered on nonjoint lines, the strand shall be bonded to an existing ground listed in paragraph (m)(4) of this section as close as possible to the crossing. This bonding is not required where crossings are made on a common crossing pole unless there is an upward change in grade at the pole.
(iii) Where roller-type bonds are used, they shall be restrained so as to avoid stressing the electrical connections.
(iv) Bonds between the suspension strand and the existing ground shall be at least No. 6AWG copper.
(v) Temporary bonds shall be left in place until the strand has been tensioned, dead-ended, and permanently grounded.
(vi) The requirements of paragraphs (m)(6)(i) through (m)(6)(v) of this section do not apply to the installation of insulated strand.
(7) Antenna work-radio transmitting stations 3–30 MHZ.
(i) Prior to grounding a radio transmitting station antenna, the employer shall insure that the rigger in charge:
(A) Prepares a danger tag signed with his signature,
(B) Requests the transmitting technician to shutdown the transmitter and to ground the antenna with its grounding switch,
(C) Is notified by the transmitting technician that the transmitter has been shutdown, and
(D) Tags the antenna ground switch personally in the presence of the transmitting technician after the antenna has been grounded by the transmitting technician.
(ii) Power shall not be applied to the antenna, nor shall the grounding switch be opened under any circumstances while the tag is affixed.
(A) Where no grounding switches are provided, grounding sticks shall be used, one on each side of line, and tags shall be placed on the grounding sticks, antenna switch, or plate power switch in a conspicuous place.
(B) When necessary to further reduce excessive radio frequency pickup, ground sticks or short circuits shall be placed directly on the transmission lines near the transmitter in addition to the regular grounding switches.
(C) In other cases, the antenna lines may be disconnected from ground and the transmitter to reduce pickup at the point in the field.
(iv) All radio frequency line wires shall be tested for pickup with an insulated probe before they are handled either with bare hands or with metal tools.
(v) The employer shall insure that the transmitting technician warn the riggers about adjacent lines which are, or may become energized.
(vi) The employer shall insure that when antenna work has been completed, the rigger in charge of the job returns to the transmitter, notifies the transmitting technician in charge that work has been completed, and personally removes the tag from the antenna ground switch.
(n) Overhead lines—(1) Handling suspension strand.
(i) The employer shall insure that when handling cable suspension strand which is being installed on poles carrying exposed energized power conductors, employees shall wear insulating gloves and shall avoid body contact with the strand until after it has been tensioned, dead-ended and permanently grounded.
(ii) The strand shall be restrained against upward movement during installation:
(A) On joint-use poles, where there is an upward change in grade at the pole, and
(B) On non-joint-use poles, where the line croses under energized power conductors.
(2) Need for testing wood poles. Unless temporary guys or braces are attached, the following poles shall be tested in accordance with paragraph (n)(3) of this section and determined to be safe before employees are permitted to climb them:
(i) Dead-end poles, except properly braced or guyed “Y” or “T” cable junction poles,
(ii) Straight line poles which are not storm guyed and where adjacent span lengths exceed 165 feet,
(iii) Poles at which there is a downward change in grade and which are not guyed or braced corner poles or cable junction poles,
(iv) Poles which support only telephone drop wire, and
(v) Poles which carry less than ten communication line wires. On joint use poles, one power line wire shall be considered as two communication wires for purposes of this paragraph (n)(2)(v).
(3) Methods for testing wood poles. One of the following methods or an equivalent method shall be used for testing wood poles:
(i) Rap the pole sharply with a hammer weighing about 3 pounds, starting near the ground line and continuing upwards circumferentially around the pole to a height of approximately 6 feet. The hammer will produce a clear sound and rebound sharply when striking sound wood. Decay pockets will be indicated by a dull sound and/or a less pronounced hammer rebound. When decay pockets are indicated, the pole shall be considered unsafe. Also, prod the pole as near the ground line as possible using a pole prod or a screwdriver with a blade at least 5 inches long. If substantial decay is encountered, the pole shall be considered unsafe.
(ii) Apply a horizontal force to the pole and attempt to rock it back and forth in a direction perpendicular to the line. Caution shall be exercised to avoid causing power wires to swing together. The force may be applied either by pushing with a pike pole or pulling with a rope. If the pole cracks during the test, it shall be considered unsafe.
(4) Unsafe poles or structures. Poles or structures determined to be unsafe by test or observation may not be climbed until made safe by guying, bracing or other adequate means. Poles determined to be unsafe to climb shall, until they are made safe, be tagged in a conspicuous place to alert and warn all employees of the unsafe condition.
(5) Test requirements for cable suspension strand.
(i) Before attaching a splicing platform to a cable suspension strand, the strand shall be tested and determined to have strength sufficient to support the weight of the platform and the employee. Where the strand crosses above power wires or railroad tracks it may not be tested but shall be inspected in accordance with paragraph (n)(6) of this section.
(ii) The following method or an equivalent method shall be used for testing the strength of the strand: A rope, at least three-eighths inch in diameter, shall be thrown over the strand. On joint lines, the rope shall be passed over the strand using tree pruner handles or a wire raising tool. If two employees are present, both shall grip the double rope and slowly transfer their entire weight to the rope and attempt to raise themselves off the ground. If only one employee is present, one end of the rope which has been passed over the strand shall be tied to the bumper of the truck, or other equally secure anchorage. The employee then shall grasp the other end of the rope and attempt to raise himself off the ground.
(6) Inspection of strand. Where strand passes over electric power wires or railroad tracks, it shall be inspected from an elevated working position at each pole supporting the span in question. The strand may not be used to support any splicing platform, scaffold or cable car, if any of the following conditions exist:
(i) Corrosion so that no galvanizing can be detected,
(ii) One or more wires of the strand are broken,
(iii) Worn spots, or
(iv) Burn marks such as those caused by contact with electric power wires.
(7) Outside work platforms. Unless adequate railings are provided, safety straps and body belts shall be used while working on elevated work platforms such as aerial splicing platforms, pole platforms, ladder platforms and terminal balconies.
(8) Other elevated locations. Safety straps and body belts shall be worn when working at elevated positions on poles, towers or similar structures, which do not have adequately guarded work areas.
(9) Installing and removing wire and cable. Before installing or removing wire or cable, the pole or structure shall be guyed, braced, or otherwise supported, as necessary, to prevent failure of the pole or structure.
(10) Avoiding contact with energized power conductors or equipment. When cranes, derricks, or other mechanized equipment are used for setting, moving, or removing poles, all necessary precautions shall be taken to avoid contact with energized power conductors or equipment.
(11) Handling poles near energized power conductors.
(i) Joint use poles may not be set, moved, or removed where the nominal voltage of open electrical power conductors exceeds 34.5kV phase to phase (20kV to ground).
(ii) Poles that are to be placed, moved or removed during heavy rains, sleet or wet snow in joint lines carrying more than 8.7kV phase to phase voltage (5kV to ground) shall be guarded or otherwise prevented from direct contact with overhead energized power conductors.
(A) In joint lines where the power voltage is greater than 750 volts but less than 34.5kV phase to phase (20 kV to ground), wet poles being placed, moved or removed shall be insulated with either a rubber insulating blanket, a fiberglass box guide, or equivalent protective equipment.
(B) In joint lines where the power voltage is greater than 8.7 kV phase to phase (5kV to ground) but less than 34.5kV phase to phase (20 kV to ground), dry poles being placed, moved, or removed shall be insulated with either a rubber insulating blanket, a fiberglass box guide, or equivalent protective equipment.
(C) Where wet or dry poles are being removed, insulation of the pole is not required if the pole is cut off 2 feet or more below the lowest power wire and also cut off near the ground line.
(iv) Insulating gloves shall be worn when handling the pole with either hands or tools, when there exists a possibility that the pole may contact a power conductor. Where the voltage to ground of the power conductor exceeds 15kV to ground, Class II gloves (as defined in ANSI J6.6–1971) shall be used. For voltages not exceeding 15kV to ground, insulating gloves shall have a breakdown voltage of at least 17kV.
(v) The guard or insulating material used to protect the pole shall meet the appropriate 3 minute proof test voltage requirements contained in the ANSI J6.4–1971.
(vi) When there exists a possibility of contact between the pole or the vehicle-mounted equipment used to handle the pole, and an energized power conductor, the following precautions shall be observed:
(A) When on the vehicle which carries the derrick, avoid all contact with the ground, with persons standing on the ground, and with all grounded objects such as guys, tree limbs, or metal sign posts. To the extent feasible, remain on the vehicle as long as the possibility of contact exists.
(B) When it is necessary to leave the vehicle, step onto an insulating blanket and break all contact with the vehicle before stepping off the blanket and onto the ground. As a last resort, if a blanket is not available, the employee may jump cleanly from the vehicle.
(C) When it is necessary to enter the vehicle, first step onto an insulating blanket and break all contact with the ground, grounded objects and other persons before touching the truck or derrick.
(12) Working position on poles. Climbing and working are prohibited above the level of the lowest electric power conducter on the pole (exclusive of vertical runs and street light wiring), except:
(i) Where communications facilities are attached above the electric power conductors, and a rigid fixed barrier is installed between the electric power facility and the communications facility, or
(ii) Where the electric power conductors are cabled secondary service drops carrying less than 300 volts to ground and are attached 40 inches or more below the communications conductors or cables.
(13) Metal tapes and ropes.
(i) Metal measuring tapes, metal measuring ropes, or tapes containing conductive strands may not be used when working near exposed energized parts.
(ii) Where it is necessary to measure clearances from energized parts, only nonconductive devices shall be used.
(o) Underground lines. The provisions of this paragraph apply to the guarding of manholes and street openings, and to the ventilation and testing for gas in manholes and unvented vaults, where telecommunications field work is performed on or with underground lines.
(1) Guarding manholes and street openings.
(i) When covers of manholes or vaults are removed, the opening shall be promptly guarded by a railing, temporary cover, or other suitable temporary barrier which is appropriate to prevent an accidental fall through the opening and to protect employees working in the manhole from foreign objects entering the manhole.
(ii) While work is being performed in the manhole, a person with basic first aid training shall be immediately available to render assistance if there is cause for believing that a safety hazard exists, and if the requirements contained in paragraphs (d)(1) and (o)(1)(i) of this section do not adequately protect the employee(s). Examples of manhole worksite hazards which shall be considered to constitute a safety hazard include, but are not limited to:
(A) Manhole worksites where safety hazards are created by traffic patterns that cannot be corrected by provisions of paragraph (d)(1) of this section.
(B) Manhole worksites that are subject to unusual water hazards that cannot be abated by conventional means.
(C) Manhole worksites that are occupied jointly with power utilities as described in paragraph (o)(3) of this section.
(2) Requirements prior to entering manholes and unvented vaults.
(i) Before an employee enters a manhole, the following steps shall be taken:
(A) The internal atmosphere shall be tested for combustible gas and, except when continuous forced ventilation is provided, the atmosphere shall also be tested for oxygen deficiency.
(B) When unsafe conditions are detected by testing or other means, the work area shall be ventilated and otherwise made safe before entry.
(ii) An adequate continuous supply of air shall be provided while work is performed in manholes under any of the following conditions:
(A) Where combustible or explosive gas vapors have been initially detected and subsequently reduced to a safe level by ventilation,
(B) Where organic solvents are used in the work procedure,
(C) Where open flame torches are used in the work procedure,
(D) Where the manhole is located in that portion of a public right of way open to vehicular traffic and/or exposed to a seepage of gas or gases, or
(E) Where a toxic gas or oxygen deficiency is found.
(A) The requirements of paragraphs (o)(2) (i) and (ii) of this section do not apply to work in central office cable vaults that are adequately ventilated.
(B) The requirements of paragraphs (o)(2) (i) and (ii) of this section apply to work in unvented vaults.
(3) Joint power and telecommunication manholes. While work is being performed in a manhole occupied jointly by an electric utility and a telecommunication utility, an employee with basic first aid training shall be available in the immediate vicinity to render emergency assistance as may be required. The employee whose presence is required in the immediate vicinity for the purposes of rendering emergency assistance is not to be precluded from occasionally entering a manhole to provide assistance other than in an emergency. The requirement of this paragraph (o)(3) does not preclude a qualified employee, working alone, from entering for brief periods of time, a manhole where energized cables or equipment are in service, for the purpose of inspection, housekeeping, taking readings, or similar work if such work can be performed safely.
(4) Ladders. Ladders shall be used to enter and exit manholes exceeding 4 feet in depth.
(5) Flames. When open flames are used in manholes, the following precautions shall be taken to protect against the accumulation of combustible gas:
(i) A test for combustible gas shall be made immediately before using the open flame device, and at least once per hour while using the device; and
(ii) a fuel tank (e.g., acetylene) may not be in the manhole unless in actual use.
(p) Microwave transmission—(1) Eye protection. Employers shall insure that employees do not look into an open waveguide which is connected to an energized source of microwave radiation.
(2) Hazardous area. Accessible areas associated with microwave communication systems where the electromagnetic radiation level exceeds the radiation protection guide given in § 1910.97 shall be posted as described in that section. The lower half of the warning symbol shall include the following:


29 CFR § 1910.268

Scoping language

Is this correct? or