410 IAC 5-4-28 - Appendix B; table for use with 410 IAC 5-4-11, 410 IAC 5-4-18, 410 IAC 5-4-19
Authority: IC 16-41-35-26; IC 16-41-35-29
Affected: IC 16-41-35
Sec. 28.
Part D
APPENDIX B
Material | Microcuries |
Americium-241 | 0.01 |
Antinomy-122 | 100 |
Antinomy-124 | 10 |
Antinomy-125 | 10 |
Arsenic-73 | 100 |
Arsenic-74 | 10 |
Arsenic-76 | 10 |
Arsenic-77 | 100 |
Barium-131 | 10 |
Barium-133 | 10 |
Barium-140 | 10 |
Bismuth-210 | 1 |
Bromine-82 | 10 |
Cadmium-109 | 10 |
Cadmium-115m | 10 |
Cadmium-115 | 100 |
Calcium-45 | 10 |
Calcium-47 | 10 |
Carbon-14 | 100 |
Cerium-141 | 100 |
Cerium-143 | 100 |
Cerium-144 | 1 |
Cesium-131 | 1,000 |
Cesium-134m | 100 |
Cesium-134 | 1 |
Cesium-135 | 10 |
Cesium-136 | 10 |
Cesium-137 | 10 |
Chlorine-36 | 10 |
Chlorine-38 | 10 |
Chromium-51 | 1,000 |
Cobalt-58m | 10 |
Cobalt-58 | 10 |
Cobalt-60 | 1 |
Copper-64 | 100 |
Dysprosium-165 | 10 |
Dysprosium-166 | 100 |
Erbium-169 | 100 |
Erbium-171 | 100 |
Europium-152 (9.2 h) | 100 |
Europium-152 (13 yr) | 1 |
Europium-154 | 1 |
Europium-155 | 10 |
Fluorine-18 | 1,000 |
Gadolinium-153 | 10 |
Gadolinium-159 | 100 |
Gallium-72 | 10 |
Germanium-71 | 100 |
Gold-198 | 100 |
Gold-199 | 100 |
Hafnium-181 | 10 |
Holmium-166 | 100 |
Hydrogen-3 | 1,000 |
Indium-113m | 100 |
Indium-114m | 10 |
Indium-115m | 100 |
Indium-115 | 10 |
Iodine-125 | 1 |
Iodine-126 | 1 |
Iodine-129 | 0.1 |
Iodine-131 | 1 |
Iodine-132 | 10 |
Iodine-133 | 1 |
Iodine-134 | 10 |
Iodine-135 | 10 |
Iridium-192 | 10 |
Iridium-194 | 100 |
Iron-55 | 100 |
Iron-59 | 10 |
Krypton-85 | 100 |
Krypton-87 | 10 |
Lanthanum-140 | 10 |
Lutetium-177 | 100 |
Manganese-52 | 10 |
Manganese-54 | 10 |
Manganese-56 | 10 |
Mercury-197m | 100 |
Mercury-197 | 100 |
Mercury-203 | 10 |
Molybdenum-99 | 100 |
Neodymium-147 | 100 |
Neodymium-149 | 100 |
Nickel-59 | 100 |
Nickel-63 | 10 |
Nickel-65 | 100 |
Niobium-93m | 10 |
Niobium-95 | 10 |
Niobium-97 | 10 |
Osmium-185 | 10 |
Osmium-191m | 100 |
Osmium-191 | 100 |
Osmium-193 | 100 |
Palladium-103 | 100 |
Palladium-109 | 100 |
Phosphorus-32 | 10 |
Platinum-191 | 100 |
Platinum-193m | 100 |
Platinum-193 | 100 |
Platinum-197m | 100 |
Platinum-197 | 100 |
Plutonium-239 | 0.01 |
Polonium-210 | 0.1 |
Potassium-42 | 10 |
Praseodymium-142 | 100 |
Praseodymium-143 | 100 |
Promethium-147 | 10 |
Promethium-149 | 10 |
Radium-226 | 0.01 |
Rhenium-186 | 100 |
Rhenium-188 | 100 |
Rhodium-103m | 100 |
Rhodium-105 | 100 |
Rubidium-86 | 10 |
Rubidium-87 | 10 |
Ruthenium-97 | 100 |
Ruthenium-103 | 10 |
Ruthenium-105 | 10 |
Ruthenium-106 | 1 |
Samarium-151 | 10 |
Samarium-153 | 100 |
Scandium-46 | 10 |
Scandium-47 | 100 |
Scandium-48 | 10 |
Selenium-75 | 10 |
Silicon-31 | 100 |
Silver-105 | 10 |
Silver-110m | 1 |
Silver-111 | 100 |
Sodium-22 | 10 |
Sodium-24 | 10 |
Strontium-85 | 10 |
Strontium-89 | 1 |
Strontium-90 | 0.1 |
Strontium-91 | 10 |
Strontium-92 | 10 |
Sulphur-35 | 100 |
Tantalum-182 | 10 |
Technetium-96 | 10 |
Technetium-97m | 100 |
Technetium-97 | 100 |
Technetium-99m | 100 |
Technetium-99 | 10 |
Tellurium-125m | 10 |
Tellurium-127m | 10 |
Tellurium-127 | 100 |
Tellurium-129m | 10 |
Tellurium-129 | 100 |
Tellurium-131m | 10 |
Tellurium-132 | 10 |
Terbium-160 | 10 |
Thallium-200 | 100 |
Thallium-201 | 100 |
Thallium-202 | 100 |
Thallium-204 | 10 |
Thorium (natural)1/ | 100 |
Thulium-170 | 10 |
Thulium-171 | 10 |
Tin-113 | 10 |
Tin-125 | 10 |
Tungsten-181 | 10 |
Tungsten-185 | 10 |
Tungsten-187 | 100 |
Uranium (natural)2/ | 100 |
Uranium-233 | 0.01 |
Uranium-234/235 | 0.01 |
Vanadium-48 | 10 |
Xenon-131m | 1,000 |
Xenon-133 | 100 |
Xenon-135 | 100 |
Ytterbium-175 | 100 |
Yttrium-90 | 10 |
Yttrium-91 | 10 |
Yttrium-92 | 100 |
Yttrium-93 | 100 |
Zinc-65 | 10 |
Zinc-69m | 100 |
Zinc-69 | 1,000 |
Zirconium-93 | 10 |
Zirconium-95 | 10 |
Zirconium-97 | 10 |
Any alpha emitting radionuclide not listed above or mixtures of alpha emitters of unknown composition | 0.01 |
Any radionuclide other than alpha emitting radionuclides, not listed above or mixtures of beta emitters of unknown composition | 0.1 |
1/ Based on alpha disintegration rate of Th-232, Th-230 and their daughter products.
2/ Based on alpha disintegration rate of U-238, U-234, and U-235.
Example: Zirconium-97 (10 µCi)(37) = 370 kBq. (10 µCi multiplied by 37 is equivalent to 370 kBq)
Notes
For purposes of 410 IAC 5-4-11, 410 IAC 5-4-18, and 410 IAC 5-4-19, where there is involved a combination of isotopes in known amounts, the limit for the combination should be derived as follows: Determine, for each isotope in the combination, the ratio between the quantity present in the combination and the limit otherwise established for the specific isotope when not in combination. The sum of such ratios for all the isotopes in the combination may exceed "1" (i.e., "unity").
Example: For purposes of 410 IAC 5-4-19, if a particular batch contains 20,000 µCi of Au-198 and 50,000 µCi of C-14, it may also include not more than 300 µCi of I-131. This limit was determined as follows:
20,000 µCi Au-198/100,000 µCi + 50,000 µCi C-14/100,00 [sic.] µCi
+ 300 µCi I-131/1,000 µCi = 1
The denominator in each of the above ratios was obtained by multiplying the figure in the table by 1,000 as provided in 410 IAC 5-4-19.
Note: To convert microcuries (µCi) to SI units of kilobecquerels (kBq), multiply the above values by 37.
State regulations are updated quarterly; we currently have two versions available. Below is a comparison between our most recent version and the prior quarterly release. More comparison features will be added as we have more versions to compare.