40 CFR § 1065.550 - Gas analyzer range verification and drift verification.
(a) Range verification. If an analyzer operated above 100% of its range at any time during the test, perform the following steps:
(1) For batch sampling, re-analyze the sample using the lowest analyzer range that results in a maximum instrument response below 100%. Report the result from the lowest range from which the analyzer operates below 100% of its range.
(2) For continuous sampling, repeat the entire test using the next higher analyzer range. If the analyzer again operates above 100% of its range, repeat the test using the next higher range. Continue to repeat the test until the analyzer always operates at less than 100% of its range.
(b) Drift verification. Gas analyzer drift verification is required for all gaseous exhaust constituents for which an emission standard applies. It is also required for CO2, H2, O2, H2O, and NH3, if required by the applicable chemical balance, even if there are no emission standards. It is not required for other gaseous exhaust constituents for which only a reporting requirement applies (such as CH4 and N2O).
(1) Verify drift using one of the following methods:
(i) For regulated exhaust constituents determined from the mass of a single component, perform drift verification based on the regulated constituent. For example, when NOX mass is determined with a dry sample measured with a CLD and the removed water is corrected based on measured CO2, CO, THC, and NOX concentrations, you must verify the calculated NOX value.
(ii) For regulated exhaust constituents determined from the masses of multiple subcomponents, perform the drift verification based on either the regulated constituent or all the mass subcomponents. For example, when NOX is measured with separate NO and NO2 analyzers, you must verify either the NOX value or both the NO and NO2 values.
(iii) For regulated exhaust constituents determined from the concentrations of multiple gaseous emission subcomponents prior to performing mass calculations, perform drift verification on the regulated constituent. You may not verify the concentration subcomponents (e.g., THC and CH4 for NMHC) separately. For example, for NMHC measurements, perform drift verification on NMHC; do not verify THC and CH4 separately.
(2) Drift verification requires two sets of emission calculations. For each set of calculations, include all the constituents in the drift verification. Calculate one set using the data before drift correction and calculate the other set after correcting all the data for drift according to § 1065.672. Note that for purposes of drift verification, you must leave unaltered any negative emission results over a given test interval (i.e., do not set them to zero). These unaltered results are used when verifying either test interval results or composite brake-specific emissions over the entire duty cycle for drift. For each constituent to be verified, both sets of calculations must include the following:
(i) Calculated mass (or mass rate) emission values over each test interval.
(ii) If you are verifying each test interval based on brake-specific values, calculate brake-specific emission values over each test interval.
(iii) If you are verifying over the entire duty cycle, calculate composite brake-specific emission values.
(3) The duty cycle is verified for drift if you satisfy the following criteria:
(i) For each regulated gaseous exhaust constituent, you must satisfy one of the following:
(A) For each test interval of the duty cycle, the difference between the uncorrected and the corrected brake-specific emission values of the regulated constituent must be within ±4% of the uncorrected value or the applicable emissions standard, whichever is greater. Alternatively, the difference between the uncorrected and the corrected emission mass (or mass rate) values of the regulated constituent must be within ±4% of the uncorrected value or the composite work (or power) multiplied by the applicable emissions standard, whichever is greater. For purposes of verifying each test interval, you may use either the reference or actual composite work (or power).
(B) For each test interval of the duty cycle and for each mass subcomponent of the regulated constituent, the difference between the uncorrected and the corrected brake-specific emission values must be within ±4% of the uncorrected value. Alternatively, the difference between the uncorrected and the corrected emissions mass (or mass rate) values must be within ±4% of the uncorrected value.
(C) For the entire duty cycle, the difference between the uncorrected and the corrected composite brake-specific emission values of the regulated constituent must be within ±4% of the uncorrected value or applicable emission standard, whichever is greater.
(D) For the entire duty cycle and for each subcomponent of the regulated constituent, the difference between the uncorrected and the corrected composite brake-specific emission values must be within ±4% of the uncorrected value.
(ii) Where no emission standard applies for CO2, H2, O2, H2O, and NH3, you must satisfy one of the following:
(A) For each test interval of the duty cycle, the difference between the uncorrected and the corrected brake-specific CO2, H2, O2, H2O, or NH3 values must be within ±4% of the uncorrected value; or the difference between the uncorrected and the corrected CO2, H2, O2, H2O, or NH3 mass (or mass rate) values must be within ±4% of the uncorrected value.
(B) For the entire duty cycle, the difference between the uncorrected and the corrected composite brake-specific CO2, H2, O2, H2O, or NH3 values must be within ±4% of the uncorrected value.
(4) If the test is not verified for drift as described in paragraph (b)(1) of this section, you may consider the test results for the duty cycle to be valid only if, using good engineering judgment, the observed drift does not affect your ability to demonstrate compliance with the applicable emission standards. For example, if the drift-corrected value is less than the standard by at least two times the absolute difference between the uncorrected and corrected values, you may consider the data to be verified for demonstrating compliance with the applicable standard.